A Review of the Impact of Extraction Conditions and Seed Quality on Canola Oil Characteristics

Greg Hatfield, Bunge North America

World Congress on Oils and Fats & 28th ISF Congress 27-30 September 2009 Sydney Australia

Presentation Outline

- Comparison of Canadian and Australian canola seed
- Impact of conditioning and seed quality on oil characteristics
- Effect of chlorophyll and sulfur on processing

2007 Canola Production

	Australia	Canada
Production (kilotonne)	1069	8802
Seeded Area (kilohectare)	758	5876
Average Yield (tonne/hectare)	1.41	1.50

From Quality of Western Canadian Canola – 2007, Canadian Grain Commission Quality of Australia Canola 2007/08, AOF & NSW Dept. of Primary Ind.

Seed Quality

	Australia 2007	Australia Average '96 – '06	Canada 2007	Canada Average '96 – '06
% oil in seed (8.5% moisture basis)	42.8	40.4	43.4	43.1
% protein content (oil free meal, 8.5% moisture basis)	40.6	39.0	41.2	40.8
Glucosinolates µg/g (8.5% moisture basis)	8	7	10	11
Chlorophyll mg/kg	-	-	15	14

Adapted from *Quality of Australia Canola 2007/08,* AOF & NSW Dept. of Primary Ind. From *Quality of Western Canadian Canola – 2007,* Canadian Grain Commission

Oil Quality

	Australia 2007	Australia Average '96 – '06	Canada 2007	Canada Average '96 – '06
C18:1 (%)	59.7	60.4	61.5	61.2
C18:3 (%)	11.0	10.3	9.8	9.9
C22:1 (%)	0.0	-	0.04	0.15
Sat F.A. (%)	7.4	7.1	7.0	7.1
lodine value	116.6	-	113	113

From Quality of Western Canadian Canola – 2007, Canadian Grain Commission Quality of Australia Canola 2007/08, AOF & NSW Dept. of Primary Ind.

Impact of Conditioning and Seed Quality on Oil Characteristics

Enzyme Activity

- Enzymes accelerate the production of undesirable compounds in the crude oil
- Two parameters affect enzyme activity
 - temperature
 - seed structure

Temperature Effect on Enzyme Activity

Seed Structure

- Enzymes are usually isolated in the seed
- Damaged seed increases oil exposure to enzymes
- If the seed structure has been damaged for some time, then the impact on oil quality will be significant
- Examples are split seeds, insect and mould damage
- Degradation can be controlled if time is minimized

- Canola seed contains glucosinolates
- Myrosinase breaks down glucosinolates during seed preparation to form isothiocyanates and thiocyanates
- These compounds remain in the oil when extracted from the seed.

Myrosinase Deactivation – Indirect Heating (Appelqvist, *J Sci Fd Agric*, 1967)

4% moisture in seeds 90 ℃ for 15 min. → little deactivation

6-8% moisture in seeds 90 ℃ for 15 min. → total deactivation

Kozlowska (*World Conf Proc*,1992) 6-9 min. of steam deactivated myrosinase

- Especially concerned with formation of nonhydratable phosphatides (NHP) in the oil
- NHP are more difficult to remove than hydratable phosphatides
- NHP are phosphatidic acids from degraded phospholipids
- Phospholipase converts phospholipids to NHP

- Factors affecting NHP content in seeds
 - Early frost
 - Wet harvest/storage conditions
 - Spontaneous heating in storage

Phospholipase Deactivation

Steam Heating of Flaked Soybeans (List, JAOCS, 1990)

Exposure Time (s)	% Enzyme Deactivated
30	0
60	7.3
120	23.5
180	95.8
240	99.8

List (*JAOCS*, 1990)

- Flakes had 1.5-1.8 times the enzyme activity of whole soybeans
- Thinner flakes resulted in more enzyme activity

Novel Conditioning Processes

- "ALCON® Conditioning Effect"
- Well known process for soybean conditioning
- Can be applied to rapeseed (Beyer, Fett/Lipid, 1997)

ALCON[®] Conditioning

ALCON® Conditioning

ALCON® Conditioning

- Colour better in oils conditioned in high-speed unit
- FFA concentration similar for both stack cooked and high-speed conditioned oils
- No data given for sulfur and chlorophyll

Novel Conditioning Processes – Super ExPro

Super ExPro Process

• Water degummed comparison

	Super ExPro	Stack Cooker
P (ppm)	6.1	100
FFA (%)	0.53	0.67

Dahlen, OCL, 1998

- Peroxide value data similar for Super ExPro and Stack Cooker oils
- No data given for sulfur and chlorophyll

Effect of Chlorophyll and Sulfur on Processing

- Chlorophyll breaks down into several derivatives
- Mouldy, heated, and frost damaged canola seed have higher concentrations of pheophytin than good quality seed
- Chlorophyll/pheophytins promote oil oxidation
- They are also nickel catalyst poisons
- More bleaching clay is required to remove these compounds

Name	Abbrev.	х	R ₁	R_2	R ₃	
Chlorophyll a	Chl a	Mg	CH ₃	$C_{20}H_{39}^{a}$	CO ₂ CH ₃	
Pheophorbide a	Pho a	H ₂	CH ₃	H	CO ₂ CH ₃	
Methylpheophorbide a	MePho a	H_2	CH ₃	CH ₃		
Pheophytin a	Phy a	H ₂	CH ₃	C20H39	CO ₂ CH ₃	
Pyropheophytin a	Pyr a	H ₂	CH ₃	C20H39	H	
Chlorophyll b	Chl b	Mg	CHŎ	C20H39	CO ₂ CH ₃	
Pheophorbide b	Pho b	H ₂	CHO	H	CO ₂ CH ₃	
Pheophytin b	Phy b	H ₂	CHO	C20H39	CO ₂ CH ₃	
Pyropheophytin b	Pyr b	H ₂	CHO	C ₂₀ H ₃₉	Ĥ	
					_	

Chlorophyll breakdown products (Endo et al, JAOCS, 1992)

 According to Suzuki and Nishioka (JAOCS, 1993), the adsorption of each derivative on bleaching clay decreases in the following order:

Pheo a > Pyro a >> Pheo b > Pyro b

Novel Chloro. Removal Methods

- 1994 US Patent 5,315,021 (P&G)
- 98% removal from crude or degummed oil
- Oil is contacted with 0.05-1.0% H₃PO₄ at 80-105°C for 10-30 minutes
- Moisture < 0.04%
- Precipitated chlorophyll removed by centrifugation or filtration after neutralization

Novel Chloro. Removal Methods

- 2002 US Patent 6,376,689 (Cargill)
- Chlorophyll removal down to 5 ppm
- Process is single step acid degumming process
- Oil is contacted with a 0.6-0.8% mixture of H_3PO_4 and H_2SO_4 at 20-50°C for 2-6 hours
- Moisture < 0.5% before acid addition, < 1.0% after
- Precipitated chlorophyll removed by centrifugation or filtration

Novel Chloro. Removal Methods

Effect of Different Acid Mixtures on the Removal of Chlorophyll from Canola Oil

Bahmaei et al, JAOCS, 2005

Sulfur Content (ppm)

	Rutkowski, <i>JAOCS</i> (1982)	Daun & Hougen, JAOCS (1976)
Crude	36	31
Degummed	20	16
Refined	12	7
Bleached	10	5
Deodorized	1	1

Sulfur Content (ppm)

	DeClerq et al, <i>GCRIC</i> <i>Conference</i> (1991)	Toeneboehn & Welsh, AOCS Conference (1992)
Degummed	7.8	5.8

- 1 ppm sulfur poisons 0.004% nickel catalyst (Ottensen, Scand. Symposium, 1971)
- Very significant!
- Typical canola oil hydrogenation will use 0.0125-0.025% nickel catalyst

- Effect on hydrogenation
 - Decreases reaction rate
 - Increases trans formation
 - Increases melting point
 - Increases steepness of SFC curve

- Catalyst usage is approx. 50% higher in canola hydrogenation compared to soybean
- Sulfur is very difficult to remove
- Significant adsorption occurs on spent nickel catalyst
- Deodorization will also remove sulfur since the compounds are volatile

Questions?

From www.dpvta.uniud.it/ Inn_Did/img/canola.jpg

