

Grains Research & Development Corporation

Canola seed nutrient concentrations for Southern Australia

Rob Norton http://anz.ipni.net

Better Crops, Better Environment ... through Science

ARAB 2014, Tanunda SA, September 30, 2014.

Why would you want to know grain nutrient concentrations?

- Nutrient budgeting removal versus replacement
 - Critical issue is the nutrient contents of produce removed
 - Reuter values often quoted (ANRA Audit)

		Р	K	S	Са	Mg
	N%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Wheat (11%)	* (2.2)	2600	3600	1400	380	1200
Wheat (0%)	*	2900	4000	1600	430	1400
Canola (0%)	3.4	5600	8100	5500	1500	3800

- Diagnostic for some soil/plant nutrient status
- Seed/Grain quality (eg N:S ratio, heavy metals, P & Zn)
- N removal to use ratio will be a reportable metric in the next round of the Sustainable Development Goals.

Relevant targets & indicators

Goal & Target	Issue	#	Potential Indicator	Potential Lead
2b Countries report on their contribution to planetary boundaries	Nitrogen and phosphorus fluxes	10	Excessive loss of reactive N and P to the environment (kg/ha) – indicator to be developed	UNEP or other agency
6a Sustainable food production	Staple crop yields	50	Crop yield gap (actual as % attainable)	FAO with IFA
	Sustainability of agriculture	51	Crop nitrogen use efficiency	FAO with IFA
	Water productivity	52	Crop water productivity	FAO
8b Reduce non- energy related GHG emission	GHG emissions from landuse change	78	Net GHG emissions in agriculture, forest & other land use sectors	UNFCCC

http://unsdsn.org/resources/goals-and-targets/

For example - N balances – National values – all agriculture = 1.76; cereals = 0.82

Data sources

- 2012 NVT canola sites 2 cultivars per site
 - represent the difference HT groups and as common as possible.
 - NSW 69 samples/12 sites
 - SA 66 samples/12 sites
 - Vic 66 samples/10 sites
 - WA 89 samples/12 sites
- ICP-OES B, Cu, K, Mn, P, S, and Zn
- ICP-MS Cd (Mo, Co, Se)
- NIR N (protein)

• Data collected as part of a micronutrient risk assessment scoping study.

National variation in macronutrients

- N: 4.28 ± 0.62 %
 - (3.4)
- P: 5672 ±1125 mg/kg
 (5600)
- K: 6863 ±1015 mg/kg
 (8100)
- S: 4063 ±670 mg/kg

- (5500)

Factor AnoVar P	Ν	Р	к	S
Region	0.000	0.000	0.000	0.000
State	0.000	0.094	0.000	0.000

Were there differences among regions?

- For example South Australia
 - For P 50% mean difference
 - For S 30% mean difference
- Maybe some yield effects
 - no correlation with yield
- Maybe some soil effects
 - no correlation of P with Colwell Mea
 P soil test
- Regional values better than means – maybe even extend to farm values for nutrient budgets for P especially

-	Region &	Ν	Р	K	S
_	State	%	mg/kg	mg/kg	mg/kg
_	LEP	4.09	6317	7140	3252
	MNSA	4.96	5767	7191	<mark>4101</mark>
	SESA	4.52	<mark>5076</mark>	7048	3923
	UEP	<mark>3.69</mark>	<mark>7809</mark>	7407	<mark>3127</mark>
	YP	4.57	6170	7496	3734
	SA	4.46	5868	7204	3725
well	Mean	4.28 ±0.62	5672 ±1125	6863 ±1015	4063 ±670
-	LSD * (p<0.05)	0.24	637	561	372
n -	<u>.</u>				

N:S ratios – given as 7 – maybe more than that?

Question S requirements & balancing S with N

National variation in micronutrients

- Large variation in Zn 37.9 ± 7.7 (critical value <25)
 - lowest values in SA (YP & UEP)
- Some variation in B 12.0 ±1.2 (critical value <10)
 - Lowest values in NEV & SWV
- Little variation in Cu 2.9 ±0.5 (critical value <3)
 - <3 on Chromosols, Tenosols, Vertosols
- Large variation in Mn (no critical value)
 Critical values taken from Reuter & Robinson

The manganese story

Images – DAFWA – MyCrop/CroPro

	B mg/kg	Cu mg/kg	Mn mg/kg	Zn mg/kg
Con	11.2	2.7	36.2	33.6
IT	11.4	3.1	40.8	39.6
RR	12.1	2.9	36.4	36.7
TT	12.5	2.8	37.0	39.0
LSD (p<0.05)	0.4	0.1	1.7	1.8

No evidence of lower Mn levels in RR type canola.

The cadmium story

All Pb concentrations were <0.3 mg/kg and all Ni concentrations <1 mg/kg, Se values 0.2 mg/kg; Co 0.083, Cd 0.025

EU & FSANZ revising its standards for heavy metals

No standard for canola but wheat standard proposed at 0.1 mg/kg

1 sample exceeded the wheat standard for whole seed.

0.1 mg/kg in defatted meal, could equate to 0.06 mg/kg whole dry seed 5% of samples (saline, acid, high P soils)

Summary

- N, P and S grain concentrations show regional variations that should be used in farm gate budgets rather than national values.
- Micronutrient grain concentrations show little evidence of compromised B, Mn or Zn supply, although Cu values are low but the critical values are not fully reliable diagnostically.
- There is no evidence of comprised Mn nutrition in glyphosate tolerant canola from these data.
- There are situations where high grain/meal Cd concentrations have been seen.

Acknowledgements

- Alan Bedggood and the NVT teams for providing the seed & background soil test data.
- Waite Analytical Services for ICP analyses
- GRDC for supporting this work
- Full micronutrient scoping study is available at:
 - <u>http://research.ipni.net/project/IPNI-2012-AUS-15</u>

