

Effect of canola genotype choice and agronomic management – Northern NSW 2012 & 2013

Rohan Brill, Matthew Gardner, Leigh Jenkins, Stephen Morphett and Rod Bambach

Rohan Brill – ARAB 30-9-2014

Introduction

- 24 G * M experiments conducted in Northern NSW 2012 & 2013 as part of GRDC supported VSAP project
 - Nitrogen rate and timing
 - Phosphorus rate
 - Seeding depth
 - Plant density
- Aimed to determine management of hybrids v OP varieties
- Experiments split with even number of OP and Hybrid
 - Balanced with TT between groups
 - Commercially popular genotypes

GRDC Grains Research & Development Corporation Your GRDC working with you

Frequency of significance of G, M and G * M in 24 trials

	Frequency F prob. <0.05		
Trial Description	G	Μ	G*M
Genotype * Seeding Depth	10/10	8/10	6/10
Genotype * Nitrogen	5/5	5/5	2/5
Genotype * Density	5/5	5/5	1/5
Genotype * Phosphorus	4/4	2/4	0/4
Overall	24/24	20/24	9/24

Genotype * nitrogen experiments – treatment variance contribution

				Factor SS	as % total SS	treatment
Experiment	Season	Site	Entries	G	М	G*M
Genotype * Nitrogen	2012	Spicers Ck	2 Hybrid, 2 OP	46	52	n.s.
		Gilgandra		69	12	19
		Nyngan	2 Hybrid, 2 OP	81	18	n.s.
	2013	Trangie	2 Hybrid, 2 OP	88	6	6
		Nyngan		79	11	n.s.

Genotype * plant density experiments – treatment variance contribution

				Factor SS a	as % total t SS	treatment
Experiment	Season	Site	Entries	G	М	G*M
	2012	Nyngan	2 Hybrid, 2 OP	90	8	n.s.
Genotype * plant density		Trangie		42	58	n.s.
	0040	Nyngan		64	28	n.s.
	2013	Caroona		40	50	10
		Garah		60	22	n.s.

Genotype * phosphorus rate experiments

Genotype * seeding depth experiments

		Factor SS as % total treatment SS		6 total t SS		
Experiment	Season	Site	Entries	G	М	G*M
Genotype * Seeding Depth	2012	Coonamble		78	14	n.s.
		Nyngan	3 Hybrid,	94	4	n.s.
		Trangie		89	n.s.	n.s.
		Moree		41	32	14
		Blackville		37	n.s.	18
	2013	Nyngan	3 OP	28	61	11
		Trangie		66	31	3
		Caroona		36	44	16
		Garah		58	22	21
		Mullaley		33	57	n.s.

Nyngan genotype * seeding depth experiment - 2014

OP TT genotype (left) hybrid Clearfield (right) at 75 mm seeding depth

Average grain yield of hybrid and OP genotypes in 24 G * M experiments

	Average yield (t/ha)		
Trial Description	Hybrid	OP	
Genotype * Seeding Depth	1.4	1.1	
Genotype * Nitrogen	1.9	1.5	
Genotype * Density	1.3	0.9	
Genotype * Phosphorus	1.5	1.1	
Overall	1.6	1.2	

Conclusion

- Genotype choice had the greatest bearing on grain yield
 - Assume a greater effect than most other crops?
- Agronomic management factors were secondary to genotype choice
- Only evidence of consistent G * M interactions was with seeding depth experiments
- Management of hybrid genotypes similar to management of OP genotypes for N, P and density

