

School of Plant Biology & The UWA Institute of Agriculture

SCREENING DROUGHT TOLERANCE IN BRASSICA RAPA: FROM GENETIC VARIATION TO GENE EXPRESSION

Yiming Guo

Supervisors: Win/Prof. Wallace Cowling Win/Prof. Neil Turner Assist/Prof. Sheng Chen Assoc/Prof. Matthew Nelson

Trend in annual rainfall 1960-2009 (mm per decade)

CSIRO and Bureau of Meteorology-- State of the Climate

Growing demand for edible oils

Source: www.fas.usda.gov/psdonline

The University of Western Australia

Why Brassica rapa?

*A diverse

* One of the ancestor species of *B. napus* (canola)

Step 1. Sources of genetic diversity

173 accessions from 44 different geographical regions

Guo YM et al (2014), Journal of Heredity,105:555-565

The University of Western Australia

Step 2. Develop a drought screening protocol in B. rapa

- □ Started from one accession
- Evaluation of drought responses
- Expand method to ten accessions

- Target at flowering stage
- Controlled environment room for treatment
- ✤ Water-stressed (WS) vs well-watered (WW)

Controlled room at flowering for treatment

Soil Water Content (%) in WS and WW treatments

Leaf stomatal conductance in WS and WW treatments

Leaf and bud temperatures in WS and WW treatments

Genotypic variation for total biomass in WS vs WW (WS/WW, %)

Genotypes vary in relative total biomass at maturity

Cooler buds during drought stress associated with greater relative biomass at maturity

Step 3. Identifying drought related genes

Two accessions were selected with contrasting responses from Step 2

PEG vs MS control in both drought-tolerant (DT) and drought-sel

□ RNA sequencing

17,227 differentially expressed genes were identified

4h after stress application

Drought-sensitive

Drought-tolerant

P<0.01

Methods: Supek F et al (2011), Plos one, journal.pone.0021800

The University of Western Australia

Brief Summary

- Genetic diversity was important for screening drought tolerance
- Some accessions coped with drought better than other with more biomass
- Accessions with cool floral bud temperatures had high final biomass – a potentially useful drought screening tool for breeders?
- Quicker drought-related pathways were regulated in tolerant line
 potential useful genes for further investigation?

Acknowledgements

Supervisors and advisors :

Winth/Prof. Wallace Cowling ; Winth/Prof. Neil Turner Assist/Prof. Sheng Chen ; Assoc/Prof. Matthew Nelson Prof. Rod Snowdon; Hackett Prof Kadambot Siddique

Funding:

China Scholarship Council and UWA Sir Eric Smart Scholarship ARC Linkage Project LP110100341 Norddeutsche Pflanzenzucht Lembke AG (NPZ) Council of Grower Group Organisations Ltd (COGGO)

Seed sources:

Australia Temperate Field Crops Collection (ATFCC) Huazhong Agricultural University (HZAU) Norddeutsche Pflanzenzucht Lembke AG (NPZ) The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Technical support:

School of Plant Biology, UWA, Australia Plant Breeding Institute, Justus Liebig University, Giessen, Germany

Thank You