Beet Western Yellows Virus
(synonym: Turnip Yellows Virus) and
its vector Green Peach Aphid in
canola

Jenny Davidson, Greg Baker and Kym Perry Bill Kimber and Ken Henry SOUTH
AUSTRALIAN
RESEARCH &
DEVELOPMENT
INSTITUTE
PIRSA

Green Peach Aphid and Beet Western Yellows Virus

- Reports of failing canola crops started mid June
- First in South Australian Mallee and lower North regions
- Green Peach Aphid reported as widespread in high numbers (>5 per leaf on every plant)
- Beet Western Yellows Virus identified in plants submitted to Horsham

BWYV and/or aphid feeding damage

- GPA sprayed out before entomologists and pathologists visited crops
 difficult to identify losses from direct feeding damage
- BWYV infects phloem and so symptoms resemble nutrient disorders, herbicide damage, physiological stress etc.
- Leaves turn yellow and purple and cupping, starting from older leaves
- Premature bolting
- Canola is most susceptible to BWYV at rosette stage
- Minimal yield loss if infected after mid podding

The Vector: Green Peach Aphid

- Transmitted at 97% efficiency by GPA
- Lower efficiency by cabbage aphid (14%) and perhaps turnip aphid
- Persistently transmitted i.e. an infected aphid will contain the virus as longs as it survives

Turnip aphid

Cabbage aphid

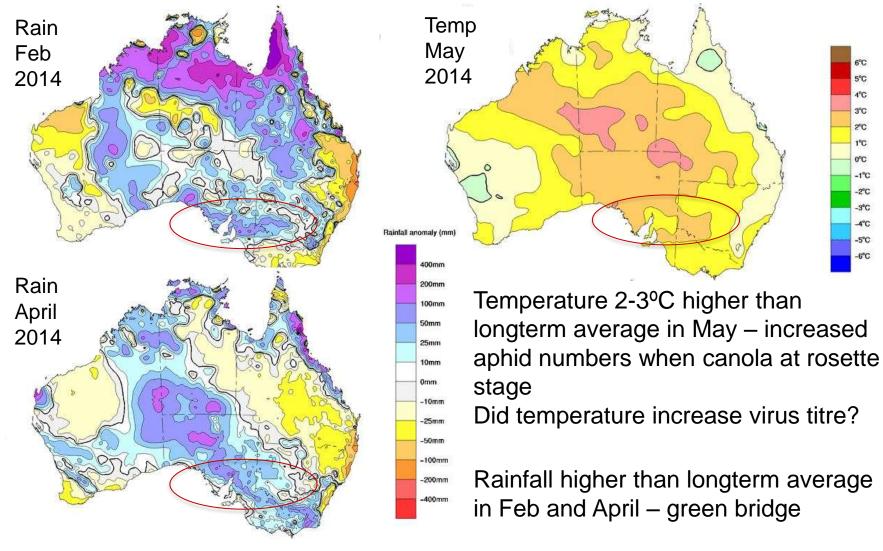
Green peach aphid

SARDI

BWYV - Where is it?

Lake Eyre National Park

Mid Sept -618 crops tested 57% crops infected


Map does not indicate severity

5-10,000 ha severely affected

Remainder growing 'normally' Is yield affected?

Why did this happen – autumn rain and temperature

Mean monthly rainfall (mm) and temperature anomalies (C)

http://www.bom.gov.au/climate/maps/

Beet Western Yellows Virus – Host Range

<u>Green bridge</u> – heavy rains Feb/March promoted weeds

Some weed hosts Pasture hosts

Wild radish Lucerne

Marshmallow Medics

Wild turnip Clovers

Fleabane

Nightshade

Stinkweed

Bedstraw

Muskweed

Thistles

BWYV– agronomic influences

Standing stubble

Damage is less in crops sown into standing stubble vs bare earth (typical aphid behaviour)

<u>Sowing date</u> – early sown crops worse - linked to timing of aphid flights (eg. Hart Time of Sowing trial – least infected in last sown plots)

BWYV agronomic influences

<u>Varieties - visual assessment still to be confirmed by virus tests</u>

NVT trial – Roseworthy SA

In general the leaf symptoms differ between IMI and TT varieties

IMI

TT

No symptoms

TT varieties	% Leaf Area Diseased
Variety 1	3.3a
Variety 2	8.3ab
Variety 3	18.3abc
Variety 4	26.7 <mark>abcd</mark>
Variety 5	31.7 <mark>abcd</mark>
Variety 6	33.3 <mark>abcd</mark>
Variety 7	35.0 <mark>abcd</mark>
Variety 8	36.7 <mark>abcd</mark>
Variety 9	45.0 <mark>bcde</mark>
Variety 10	45.0 <mark>bcde</mark>
Variety 11	48.3 <mark>cde</mark>
Variety 12	51.7 <mark>cde</mark>
Variety 13	55.0 <mark>cde</mark>
Variety 14	55.0 <mark>cde</mark>
Variety 15	55.0 <mark>cde</mark>
Variety 16	58.3 <mark>de</mark>
Variety 17	63.3 <mark>de</mark>
Variety 18	75.0 <mark>ef</mark>
Variety 19	100.0 <mark>f</mark>
LSD	38.05

IMI varieties	% Leaf Area Diseased
Variety 1	28.3 <mark>a</mark>
Variety 2	31.7 <mark>a</mark>
Variety 3	53.3 <mark>ab</mark>
Variety 4	76.7 <mark>bc</mark>
Variety 5	80 <mark>bc</mark>
Variety 6	86.7 <mark>bc</mark>
Variety 7	91 <mark>bc</mark>
Variety 8	93.3 <mark>bc</mark>
Variety 9	98.3 <mark>c</mark>
Variety 10	100 <mark>c</mark>
Variety 11	100 <mark>c</mark>
Variety 12	100 <mark>c</mark>
LSD	43.48

GPA – insecticide treatment observations

Seed dressings

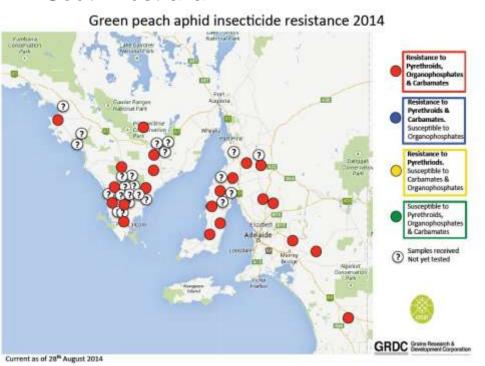
Neonicotinoids-

- Gaucho (imidacloprid) initially reduced infestation
- Cruiser Opti (thiamethoxam) also has aphicide action

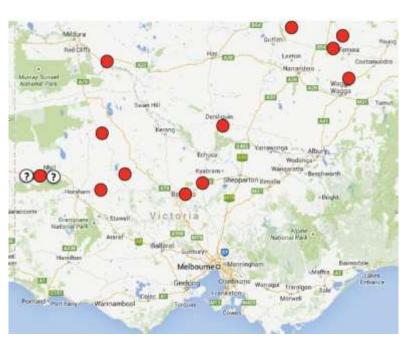
Cosmos (fipronil) – no protection against aphid infestation

Foliar Insecticides – too late to protect seedling crops

SP's, OP's and Pirimor – widespread GPA resistance


OP resistance complex – some products proving active in field

Transform – effective against GPA, but applied too late


GPA insecticide resistance 28 Aug 2014

Paul Umina cesar

South Australia

Victoria & New South Wales

http://cesaraustralia.com

Concerns re future overuse of Transform which has the potential to create resistance in GPA

BWYV – spread in spring 2014?

Initially there were concerns regarding spring flights of GPA

- Further spread of BWYV in previously uninfected canola crops
- Further spread of BWYV in pulse crops
 - particularly chickpea and lentils
 - maybe damage in field pea and faba bean
- No flights of aphids recorded yet frosts reduced populations.

BWYV – Where to from here – future years?

Frequency of similar epidemics likely to be low

But greater attention to green bridge control is required

- Control broadleaf weeds

In high risk season

(i.e. green bridge & mild late summer/ warm autumn)

- Insecticide (neonicotinoid) seed dressing at sufficient rate to coat seed
- Sow at higher rates to reduce aphid landing
- Later sowing time to avoid aphid landing
- Sow into standing stubble
- Good agronomic practice to get good crop establishment
- Monitor young crops for aphid infestation

BWYV – Where to from here?

Funding from SAGIT and GRDC

- a. Crop Management Survey in affected vs. unaffected crops via consultants/ agronomists. (aim for 400 crops)
- b. Coordinator(s) for data collection and collation
- c. Virus survey of unaffected crops, weeds and NVT and agronomy trials
- d. Aphid populations for insecticide resistance testing (cesar)

Photo: Eudunda (SA) Aug 21st

Acknowledgements

Virus testing & agronomist meetings

- Frank Henry, Mohammad Aftab, Angela Freeman (VicDEPI)
- Joop Van Leur, Kurt Lindbeck, Don McCaffery (NSW DPI)
- Michelle Russ, Marzena Kaczmarek and casuals (SARDI)

Survey Monkey - Helen de Graaf (SARDI)

Agronomists including-

Sam Holmes, Mick Faulkner
Many other agronomists

Brenda Coutts, virologist DAFWA

Murray Sharman, virologist QDAFF

Katherine Hollaway & eXtension Aus (Vic DEPI)

Anyone else that we forgot

Photo: Eudunda (SA) Aug 21st