

Recent developments in dual-purpose canola

John Kirkegaard, S Sprague , H. Dove, J Lilley, L Bell, M Seymour, J McCormick J Hunt, P Hamblin

SUSTAINABLE AGRICULTURE FLAGSHIP www.csiro.au

Background – Why?

- Reduce risk of canola (millenium drought)
- Manage weeds and disease in HRZ cereals
- Highly profitable alone, and for system

How?

- **2004-06** CSIRO Pilot studies (Canberra)
- **2007-09** GRDC Best-Bet Management (main wheat-belt)
- **2009-12** GRDC Integration in the HRZ (canola and wheat)
- **2013-15** GRDC Refining grazing management

[Grain and Graze I, II, III]

Kirkegaard et al., (2008) Australian Journal Agricultural Research 59, 291-302

Matching crop phenology to site and season

TABLELANDS/HRZ/IRRIGATION: Winter types

Sow Gr		Flow		Н
--------	--	------	--	---

SLOPES: Grain/Graze - Early sowing of Late Spring types

WHEAT BELT: - Clip-grazing - Normal window Spring types

				Sow		Gr			Flow		Н	
Jan	Feb	Mar	Apr	May	Jun	Ju	ıl	Aug	Sep	Oct	Nov	Dec

First commercial crop grazed at Bobbara Station, NSW in 2007

Best Bet management guidelines

- Select a suitable paddock planned for canola. Good moisture.
- Sow 2-3 weeks earlier than normal be prepared
- Variety appropriate phenology for the site/sowing time
 - good blackleg resistance, high vigour
 - weed control early sowing and chemical withholding periods

• Commence grazing when plants are well anchored and there is adequate biomass (~1.5 t/ha) usually 6-8 leaves; mid-late June.

• Lock-up before buds elongate >10 cm, to avoid yield loss. If later, graze moderately to remove leaf. Bud removal delays flowering.

- Expect 600-800 DSE grazing days/ha (4-6 weeks @25 dse/ha)
- Consider top-dressing N after grazing if rainfall is forecast

GRDC (2009) Canola Best Practice Management Guide for Southeast Australia

Success in a range of environments

Peter Watt, Elders Cowra (15 growers, 2008)

"Generally positive results, some yield penalties on crops grazed late. Canola will become a standard option in the feed-base. The concept has moved from the experimental to operational".

Site/Year	Variety	GSR	Sowing	Grazing		Yield
		(mm)	date	Time	DSE.day/ha	(t/ha)
Young '08	Taurus (W)	300	7/4	16/6-14/8	2600	3.8
Young '07	Garnet (S)	300	16/4	2/7-30/7	700	3.7
Temora '11	45Y82 (S)	200	14/4	24/6-26/6	800	3.4
Wagga '08	46Y78 (S)	182	8/5	1/8-15/8	462	0.6
Sea Lake '12	43C80 (S)	103	19/4	2/7-26/7	(1.0 t/ha)	1.6

Dove and Kirkegaard (2014) Journal Science Food Agriculture 94, 1276-83

Recent research

GRADC Grains Research & Development Corporation Your GRDC working with you

"Refining crop and grazing management of DP crops"

Lock-up time and residual biomass

Canola experiments at Young 2007-2009 – sown mid-April

Kirkegaard et al., (2012) Field Crops Research 63, 429-43

Greenethorpe site (landra)

Lock-up time and residual biomass

Highest paddock return with some yield loss

Crop and variety	Treatment	Lock-up	Biomass Removed (t/ha)	Residual Biomass (t/ha)	Yield (t/ha)	Extra Return (\$/ha)
HYOLA971CL	Uncut				2.8	
(sow 25/3)	6-8 lf + July	7/5, 24/7	2.4	2.6	2.6	+500
	6-8 lf + Aug	7/5, 6/8	3.8	3.6	2.8	+940
	Grazed	4-6/7	5.6	0.4	2.0	+1025
HYOLA575CL	Uncut	•	•		2.8	
(sow 23/4)	6-8 If Hard	17/7	0.7	0.2	2.6	+40
	SE Hard	30/7	1.4	0.7	2.0	-65
	SE Mod	30/7	1.1	1.0	2.8	+255

Kirkegaard et al., (2014); Bell et al., (2014) GRDC Updates Temora, Wellington

Whole farm benefits – system experiment

- Pasture spelling benefit evaluated
- Combined wheat + canola grazing system
- Benefits maximised at ~15% DP crop [+\$100-200 per farm ha]

Farm adoption – Angus Gibson (Goulburn)

"A decade ago we only grew fine wool...... Now we produce a range of crops and pastures for forage, silage, hay and grain as well as meat from sheep and cattle"

Farm adoption – Peter Brookes (Goulburn)

- All winter canola (800ha) sown early March
- Grazed 16/4 to 16/8 @ 23 lambs/ha (35 kg in, 50 kg out)
- At 2 t/ha seed yield = Operating profit \$1000/ha
- Clean paddock for wheat (1.5 t/ha yield increase in wheat)
- Canola produces more early biomass for grazing than wheat
 - Farm profits increase **\$100 per farm ha** (experiments, modelling, top growers)

Bell et al., (2014) Crop and Pasture Science (in press)

Farm adoption – Andy Fowler (Condingup, WA)

Hybrid RR Spring Canola after grazing

Increased crop area by 10% and winter dse from 12 to 18/ha

Alex Murray Peter Hamblin Rod Kershaw

SUSTAINABLE AGRICULTURE FLAGSHIP www.csiro.au

Measured whole-system level benefits (2013)

Value \$ per	Permanent Pasture Control	Pasture + PPCW:	
GROSS MARGIN		310	434
Income	Grain		256
	Wool	457	380
	Lambs	455	341
Expenses	Suppt feeding	244	89
	Fertilizer	45	131
	Other crop & pasture		107
	Other livestock	313	216

Optimum grazing time

Monitor bud elongation

Getting late

Timing of removal is the key!

 Grazing after buds elongate > 10 cm delays flowering, potentially reducing yield

Growth stage at grazing/cutting

Grazing canola at Temora (2010 and 2011)

Two field experiments with FarmLink at Coleman's (Water-Use Efficiency Site)

Sown	GSR	Grazing			Variety	Yield	(t/ha)
	(mm)	Time	SR	DSE.d/ha		UG	Graze
15 April	460	30/6-1/7	Crash	517	Tawriffic	4.1	4.0
14 April	200	24-25/6	Crash	~800	45Y82	3.4	3.1

Residual biomass 0.4 t/ha

Grazing canola at Wagga Wagga (2008)

Two field experiments grazed by sheep in a hot, dry season

Sown	GSR	Grazing			Varieties	Yield	(t/ha)
	(mm)	Time	SR	DSE.d/ha		UG	Graze
29 April	350	4-11/7	28 DSE	196	46Y78		
					Garnet	1.6	1.5
					Marlin		
8 May	182	1-15/8	33 DSE	462	46Y78		
					Garnet	0.6	0.4*
					Marlin		

Residual biomass 1.0 t/ha

Recent CSIRO canola research - Experimental

• CSP00132 (2009-2012)- "Optimising integration of dual-purpose crops in HRZ"

