Analysis and interpretation of co-located canola chemistry experiments in NVT

Grains Research & Development Corporation

Aanandini Ganesalingam, Daniel Tolhurst, Deborah Bud, Alison Smith & Brian Cullis

Outline

- Recap of the analysis to date
- Highlight changes to the analysis
- Outline the new method of results presentation:
 Production Value – PLUS system

Aim

Provide growers with information for the selection of varieties for their particular growing environment

 Multi-environment trial (MET) analysis of NVT provides this information

Recap: the MET analysis

- MET analysis is accomplished using two stages:
 - Stage 1:
 - Analysis individual trials
 - Variety means & statistical weights
 - Stage 2:
 - Means combined across trials (locations & 5 years)
 - Subject to linear mixed model analysis

New: Stage 2 approach

- Implemented last season for wheat, barley & canola
- Involves a factor analytic (FA) mixed model for variety by environment effects (Smith et al. 2014)
- Provides variety information at an individual environment level
- NOT individual trial results better accuracy
 - More data
 - Genetically correlated environments

Canola NVT

Practical Considerations

- NVT canola includes varieties from the 3 tolerance groups
 - Round-up Ready RR (since 2008)
 - Triazine Tolerant TT
 - Imidazolinone Tolerant IT
 - Conventional CC
- Often more than 1 group is tested at the same NVT site & year

- Trial split into "blocks" – each a tolerance type
- Within blocks, varieties assigned to plots using spatially efficient RCB

Spraying Regime

- Sowing date: 10 May 2012
- Harvest date: 9 November 2012

Chemical	Chemistry Group	Date of Application		
Glyphosate	RR	9/5	17/6	
Atrazine	TT	10/5		31/5
Intervix	IT		17/6	

Statistical Considerations 1st Stage

- Historically Stage 1 analyses involve the individual analyses of each block at a site
- Currently analysis consists of all blocks together
 - Reflects the randomization process of the full site
 - Tolerance blocks are within proximity & managed similarly
 - See conference paper for further details....

Statistical Considerations 2nd Stage

- New FA approach involves estimation of
 - a genetic variance for each environment and
 - a genetic correlation for each pair of environments
- Number of varieties in some tolerance groups can be very small

Chemistry Type	No. Varieties		
IT	12		
RR	30		
TT	23		

Katanning 2012

Keith 2013

Chemistry Type	No. Varieties
IT	12
СС	9
TT	20

Statistical Considerations 2nd Stage

- Reliable estimates of genetic variances & correlations If all tolerance groups should be analyzed together in Stage 2 analysis
- So that "environment" encompasses the NVT site as a whole
- Note that this provides another important reason for new Stage 1 analyses of all blocks together
 - (See conference paper for details)

The Results

- All tolerance groups are analyzed together
- Results (Production Values) are reported separately for each group due to chemistry
- Blocked designs do not allow valid comparisons of varieties in different chemistry blocks
 - See conference paper for further details

Further Considerations

- SAGI has always believed that growers may want variety comparisons across tolerance groups –
 - Received mixed feed-back
- SAGI has worked towards implementing experimental designs & analysis that would allow such comparisons
- Split plot like design:
 - 2008 5 in Vic & NSW
 - 2009 5 in Vic, NSW & WA
 - 2010 8 in WA, 5 in NSW & Vic (data courtesy of ACAS 2014)

Further Considerations

- Split-plot designs were statistically valid but
 - Practically inflexible required alterations to standard trial operator spraying practices
 - Proved too difficult so split-plot designs not implemented again
- New designs are not as statistically efficient as split-plot designs but still allow valid comparisons between tolerance groups and practically more flexible

Results – Production Values

Production Value PLUS System

- Method previously outlined = Production Value PLUS System
- Produces "Production Values" (PVs) in t/ha for all varieties for each environment (year & site combination)

Basic definitions:

- Variety PVs: are positive or negative differences relative to a base-line (PV = o)
- PV = o Reflects the average expected yield of all the varieties in the current NVT data set, if grown in that particular environment

Conclusion

In Summary

- Current designs do not allow for valid comparisons of varieties in different tolerance groups
- Experimental designs that will allow such comparisons are available on request
 - Easy to generate and should be easy to implement.
- PVs produced for all varieties, irrespective of tolerance group
 - Currently, graphical displays are produced for each group
 - We would like to implement the new designs so that varieties from different tolerance groups can be compared on the same graph

Reference

 Smith, A., Ganesalingam, A., Kuchel, H. and Cullis, B. (2014). Factor analytic mixed models for the provision of grower information from national crop variety testing programmes. *Theoretical and Applied Genetics*. Accepted.

Acknowledgements

- Grains Research and Development Corporation (GRDC) of Australia
- GRDC and ACAS for use of the NVT data

Take home messages

- No valid comparison of varieties in different tolerance groups with current designs
- Experimental designs that enable this are available on request
- PVs produced for all varieties, irrespective of tolerance group
 - We would like to implement the new designs so that varieties from different tolerance groups can be compared on the same graph

National Variety Trials

