EMU OIL INCREASES CRYPT DEPTH BUT ONLY MINIMALLY AFFECTS OTHER INDICATORS OF COLONIC INTEGRITY IN A RAT MODEL OF COLITIS

SUZANNE MASHTOUB

Discipline of Physiology, School of Molecular & Biomedical Science, The University of Adelaide, SA, Australia

suzanne.mashtoub@adelaide.edu.au

INFLAMMATORY BOWEL DISEASE

- Chronic, idiopathic disease
- Uncontrolled immune response
 - Excess production of pro-inflammatory cytokines (IFN-γ, TNF-α,
 IL-2)
- Ulcerative Colitis (UC) & Crohn's disease
- Current treatments include immunosuppressants, antibiotics,
 corticosteroids and 5'aminosalicyclic acid → variably effective
- Clear need for improved therapeutic approaches

(Hendrickson et al., 2002)

 Emu (Dromais Novae-Hollandiae) = large, flightless bird indigenous to Australia

 Oil extracted from subcutaneous & retroperitoneal fat (render, filter, centrifuge)
 (Whitehouse et al., 1998)

High fatty acidcomposition

FATTY ACID	COMMON NAMES	MEAN (%) (±1 SD)	RANGE (±3 SD)
14:0	Myristic	0.4 ± 0.08	0.17 - 0.68
16:0	Palmitic	22.0 ± 1.50	17.5 - 26.5
16:1	Palmitoleic	3.5 ± 0.78	1.2 - 5.7
18:0	Stearic	9.6 ± 0.80	7.2 - 12.0
18:1	Oleic	47.4 ± 3.00	38.4 - 56.4
18:2	Linoleic	15.2 ± 3.00	6.2 - 24.2
18:3	Linolenic	0.9 ± 0.30	0.1 – 1.8

Main anti-inflammatory mediators:

→ Omega 9

→ Omega 3

TGA- compositional guideline: Refined Emu Oil

 Also contains variable levels of compounds including antioxidants and skin-permeation enhancing factors

Evidence of Emu Oil anti-inflammatory properties:

- Yoganathan et al., 2003
 - → Croton oil-induced auricular swelling in CD-1 mice
- → Only Emu Oil significantly reduced auricular thickness and earplug weights (-72% and -71%, respectively)

TABLE 2
Thickness and Weight Differences^a of Ears in Mice Treated with Various Oils 2 h After Croton Oil Application and 6 h After Oil Treatment

Treatment	Thickness (mm)	Weight (mg)
Control	0.285 ± 0.023^{a}	24.44 ± 6.45^{a}
Emu oil	0.081 ± 0.009^{b}	7.22 ± 1.45 ^b
Fish oil	$0.143 \pm 0.013^{a,b}$	$11.22 \pm 1.84^{a,b}$
Flax oil	$0.143 \pm 0.025^{a,b}$	$13.27 \pm 4.13^{a,b}$
Olive oil	$0.171 \pm 0.026^{a,b}$	$13.78 \pm 1.76^{a,b}$
Liquified chicken fat	$0.205 \pm 0.022^{a,b}$	$18.08 \pm 2.00^{a,b}$

^aValues are mean \pm SD, n = 10. Values in a column not sharing a common superscript roman letter are significantly different at P < 0.05.

Evidence of Emu Oil anti-inflammatory properties:

- Yoganathan et al., 2003
 - Emu Oil significantly reduced pro-inflammatory mediators (TNF-α, IL-1α)
 - Greater reduction by Emu Oil cf. fish, flaxseed, olive, or liquefied chicken fat, or left untreated

TABLE 3 Ear Plug Tissue Concentrations of IL-1 α and TNF- α in Mice Treated with Various Oils 2 h After Croton Oil Application and 6 h After Oil Treatment

Treatment	IL-1α (pg/mg)	TNF-α (pg/mg)
Control	307.2 ± 35.02^{3}	79.25 ± 15.53 ^a
Emu oil	92.3 ± 12.18^{b}	$31.74 \pm 3.62^{\rm b}$
Fish oil	132.2 ± 19.65^{b}	$50.67 \pm 10.17^{a,b}$
Flax oil	$173.9 \pm 40.95^{a,b}$	$52.61 \pm 7.14^{a,b}$
Olive oil	$155.9 \pm 27.38^{a,b}$	$38.27 \pm 5.23^{\mathrm{b}}$
Liquified chicken fat	$227.7 \pm 23.13^{a,b}$	$56.85 \pm 6.19^{a,b}$

^aValues are mean \pm SD, n = 10. Values in a column not sharing a common superscript roman letter are significantly different at P < 0.05. IL, interleukin; TNF-α, tumor necrosis factor-alpha.

- Yoganathan et al., 2003
 - Emu Oil significantly reduced pro-inflammatory mediators (TNF-α, IL-1α)
 - Greater reduction by Emu Oil cf. fish, flaxseed, olive, or liquefied chicken fat, or left untreated
 - → unusual: Emu Oil contains significantly less anti-inflammatory

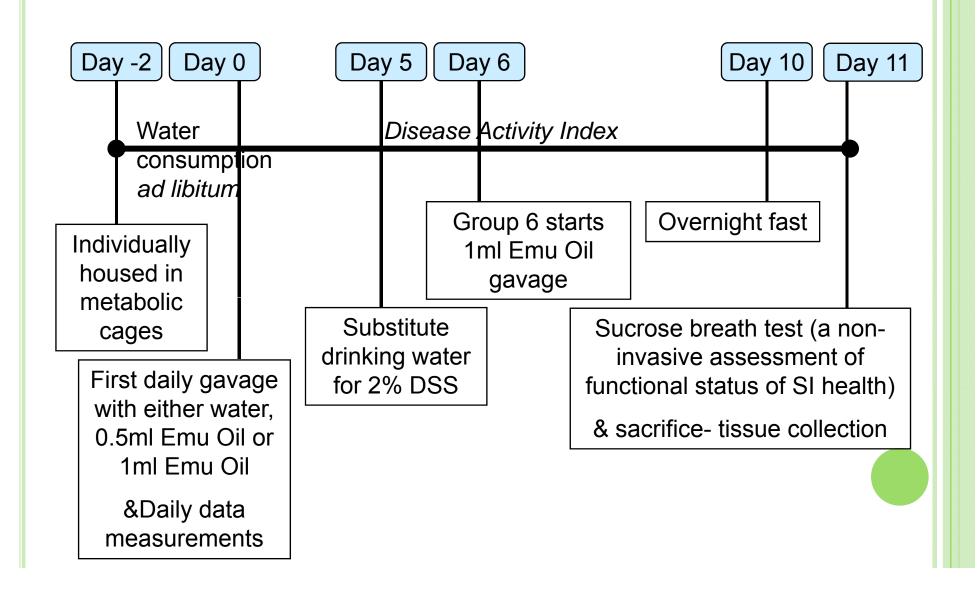
 FAs than other oils
 - → thus, Emu Oil anti-inflammatory properties are not fully explained by the FA profile

HYPOTHESIS

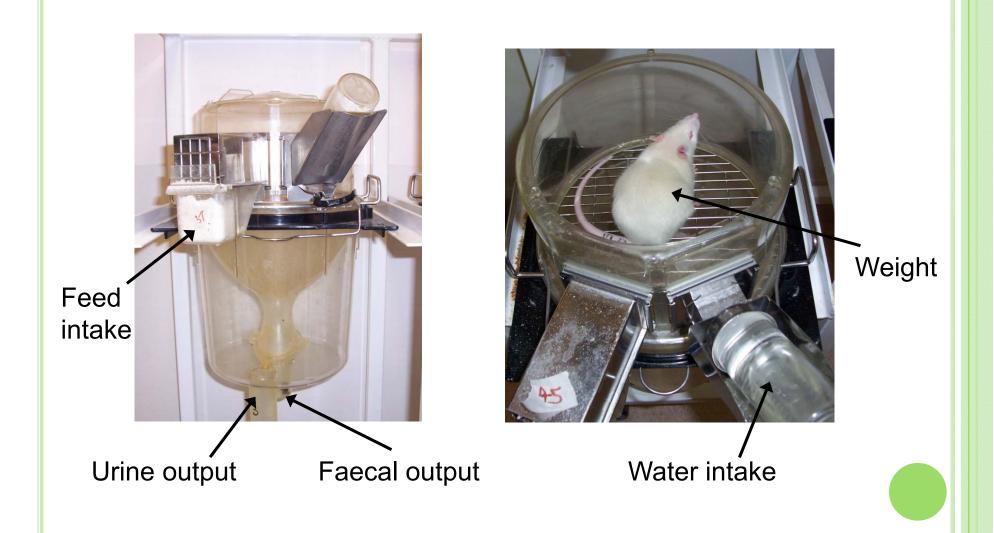
Emu Oil would decrease the severity of dextran sulphate sodium (DSS)-induced colitis in the rat through a preventative and/or regenerative mechanism.

AIMS

- 1.To evaluate Emu Oil for its potential to ameliorate DSS-induced colitis when administered orally to rats
- 2. To compare its potential protective or reparative properties

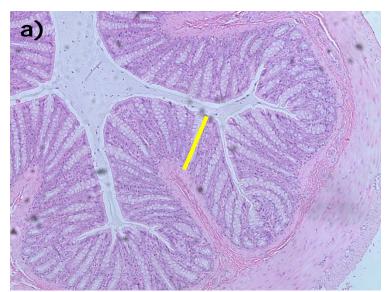

RESEARCH PLAN

- Male Sprague Dawley rats (135-150g)
- 11 day trial
- 6 treatment groups (n=8/group)


ad libitum: oral gavage

- 1: Water + Water
- 2. Water + 1ml Emu Oil
- 3: DSS + Water
- 4: DSS + 0.5ml Emu Oil
- 5: DSS + 1ml Emu Oil
- 6: DSS + 1ml Emu Oil at day 6 (1 day post DSS commencement)

RESEARCH PLAN



DAILY MEASUREMENTS

HISTOLOGICAL ANALYSES

- 4µm sections of colon were stained with Haematoxylin & Eosin to measure:
 - Proximal and Distal Colonic crypt depth
 - Proximal and Distal Colonic Overall Damage severity score (8 parameters)

Representative photomicrographs of 4µm sections of distal colon stained with H&E.

(a) Healthy (b) Colitic controls

BIOCHEMICAL ANALYSIS

- Myeloperoxidase (MPO) assay
- MPO= enzyme in intracellular granules of neutrophils
 - → Tissue neutrophil content index
 - → Indirect measure of acute inflammation in colon (Mauger et al., 2007)

RESULTS

RESULTS

Emu Oil had no significant effect on:

- Disease Activity Index
- Daily data (feed and water intake, faecal and urine output)
- Sucrose Breath Test
- Body weight change
- Myeloperoxidase activity (acute inflammation)

RESULTS

Emu Oil significantly:

- Decreased damage severity cf. Colitic-controls
- Lengthened proximal and distal colonic crypts

CONCLUSIONS

 Emu Oil improved selected biological parameters associated with damage to the intestine in an experimental model of colitis

2. This may represent a new mechanism of action for Emu Oil in protection and repair from injury, indicating its therapeutic potential as a dietary supplement to augment conventional treatment approaches for IBD

FUTURE DIRECTIONS

- Other bowel conditions (mucositis; NSAID-eneteropathy)
- Comparisons with other ratite oils and animal oils
- Inter-batch variations
- Optimal dose and timing for treatment regimens
- Fractionation- identification of the active factor

ACKNOWLEDGEMENTS

THE WOMEN'S AND CHILDREN'S HOSPITAL, NORTH ADELAIDE, SA

Assoc. Prof. Gordon Howarth Assoc. Prof. Ross Butler

Ruth Lindsay Kerry Lymn

Gastro lab

THE QUEEN ELIZABETH HOSPITAL, WOODVILLE NORTH, SA

Dr. Adrian Cummins Basil Hetzel Institute

Gastro lab

EMU TRACKS PTY LTD, MARLESTON, SA, AUSTRALIA

THE UNIVERSITY OF ADELAIDE

WORLD CONGRESS ON OILS AND FATS & 28th ISF CONGRESS 2009

