

Jensen, S.K.
University of Aarhus
&
Schmidt, F.
Evilec ApS

DENMARK

Antioxidants

Direct antioxidants

- redox active
- short-lived
- sacrificed

Indirect antioxidants

- may or may not be redox active
- may chelate oxidative cations as Fe²⁺ and Cu²⁺

BHT – Butylated hydroxy toluene

ROO* radicals are deactivated by hindered phenol via the following reaction.

The phenoxy radical generated are very stable

Phospholipids

Hypothesis

- Combinations of primary antioxidants (BHT) and indirect antioxidants (chelating agents as phospholipids) wil provide a better oxidative stability of a feed mix containing high amounts of unsaturated fatty acids and prooxidants as Fe²⁺ and Cu²⁺!
- Evaluation of oxidative stability:
 Quantitative analysis of free tocopherols by HPLC.

(α - and γ -Tocopherol were added to the feed with 100-200 mg/kg feed)

Experimental setup (1)

- Starter pig feed composed of protein concentrate, wheat, fish meal, canola oil
 + mineral vitamin mixture
 - Were added
 - 1) 60 ppm BHT
 - 2) 3.5% lecithin (on the expense of canola oil)
 - 3) 60 ppm BHT + 3.5% lecithin
 - Mixed and pelleted at either 81 C or 91 C and stored for 64 days at 15-20 C

Experiment 1

Effect of antioxidants and pelleting temperature on tocopherols exp. 1

Storage time, days Y = aX + b					
81 C	15	30	60		
Control	84	69	37		
BHT	87	74	48		
Lec	88	76	52		
Lec + BHT	91	81	62		

Storage time, days $Y = aX^2 + bX + c$				
91 C	15	30	60	
Control	69	47	26	
BHT	74	56	43	
Lec	77	59	39	
Lec + BHT	88	77	61	

Experimental setup (2)

- Starter pig feed composed of protein concentrate, wheat, fish meal, palm oil/canola oil + mineral vitamin mixture
 - Were added
 - 1) 100 ppm BHT
 - 2) 1.1% lecithin (on the expense of canola oil)
 - 3) 100 ppm BHT + 1.1% lecithin
 - Mixed and pelleted at either 81 C or 91 C and stored for 88 days at 15-20 C

Experiment 2

Effect of antioxidants and pelleting temperature on tocopherols exp. 2

Storage time, days $Y = aX^2 + bX + c$					
81 C	0	45	88		
Control	100	73	46		
BHT	100	84	59		
Lec	100	73	55		
Lec + BHT	100	95	69		

Storage time, days $Y = aX^2 + bX + c$				
91 C	0	45	88	
Control	100	63	41	
ВНТ	100	83	55	
Lec	100	67	52	
Lec + BHT	100	101	75	

Conclusions

- The content of tocopherols decrease with increasing storage time irrespective of the type of antioxidants
- Pelleting at 91 C cause greater reduction in tocopherol content than pelleting at 81 C.
- Lecithin and BHT acts as synergistics antioxidants