Oil Crops Research Institute, Chinese Academy of Agricultural Sciences

> Jiang Mulan mljiang@oilcrops.cn

Functions of PUFAs:

GLA Anti-aging Weight loss Anti-cancer Hairdressing Anti-lipid oxidation Anti-bacterial Activity

Intermediate of many other PUFAs

acid's transformation to GLA

Where is it ?

Main Derivations of PUFAs:

 high production costs

 diminishing feedstock

 Image: Second state

 limit PUFAs' supply and usage

Seek New resourses is no time to delay.

algae

Fish oil in the deep sea

Borage seed Oil

Evening Primose Oil

Conclusions:

- New resources: reduce costs, increase production
- make up for the lack of animal and plant resources
- improve the standards of people's living

Purposes and Significances

Purposes

- Clone the genes of \triangle 6-fatty acid desaturase
- Construct plasmid with strong promoter
- Transform the genes into oleaginous yeast
- Realize the heterogenous expression
- Increase GLA's contents.

Significances

- Yeast, especially <u>oleaginous yeast</u> has a <u>high oil content</u> and <u>high</u> <u>linoleic acid rate</u> <u>high content GLA</u> with △6-desaturase.
- Oleaginous yeast as a host strain expressing foreign genes has not been published yet, so it is a <u>new and challenging work</u> for us.

transformation to GLA

Resources of Strains and Genes

Resources of Strains and Genes

Strains: Rhizopus stolonifer (49% GLA of total oil content)

Rich in PUFAs

Cunninghamella echinulata

Genes:

 \triangle 6-Desaturase (D6DRs) from *Rhizopus stolonifer*

 \triangle 6-Desaturase (D6DM) from *Cunninghamella echinulata*

GenBank, numberred DQ291156 and DQ177498, respectively.

Resources of Strains and Genes

Host strains

- Rhodotorula glutinis
- Lipomyces starkeyi
- Lipomyces kononenkoae
- **Trichosporon cutaneum**
- **Trishosporon fermentans**
- Trishosporon sp
- Pichia pastoris
- Saccharomyces cerevisiae

Functional identification of \triangle **6-fatty acid desaturase**

- We have constructed several plasmids:
- **pHBM605(pHBM906**_{CN}+D6DM) / Pichia pastoris GS115
- **pHBM615(pHBM906**_{CN}+**D6DRs)** / *Pichia pastoris* GS115

Composition Changes of Fatty acid in *Pichia pastoris* GS115/pHBM605 before and after transformation

Fatty acid Percentage Number	Oleic acid	Linoleic acid	GLA	ALA
-CK	49.56	16.24	0.19	2.86
1	12.33	3.54	3.02	10.77
2	8.03	0.09	3.03	14.31
3	10.01	1.11	2.95	11.64

GLA is accumulated After transformation.

Our major work is to construct a novel vector which can be used in oleaginous yeast.

- Integration Expression Plasmid of Lipomyces kononenkoae

Integration Expression Plasmid of Trishosporon fermentans

YPD without Hygromycin B Hygromycin B, 80ug/ml YPD

Fig. 4.4 Growing Conditions of L. kononenkoae before and after transformation

Lipomyces kononenkoae

Fig. 4.5 Growing conditions of *L. kononenkoae* before and after transformation in Fluorescence microscopy

Trishosporon sp.

Conserved sequence of phosphoglycerokinase protein sequence in *Trichosporon sp*

Chromosome walking: The promoter sequence

Integration Expression Plasmid of Trichosporon fermentans.

Trishosporon sp.

ATACGACTCACTATAGGGCACGCGTGGTTGACGGCCCGGGCTGGTCTGATAACTCTGGCTTC TCCCAATCCAAT TATAATGTATTTTTTGCTTTAGAATTTGAAAGGGTTCAAATAAAGTTGGTG TCAAATATTTAGTGCAGATGTGTCAAATTTATATGGTTTCTAGGAAAGACTAGACTATTACCTC AAAGGTCCTATCCTAGATTGACACCCTAGATCAATACTAGTCTCCTCTGAAAACGGTCTAGC AAAACCAATTCGCGAACAAGATTTTTAATTGCACCATGAGACGATCAAGAGTGAAAAATTG TATGATCTGAAGCACAAGGTACACTTTGATGGTTAAATGAGCTGGAATTGTTAGGTGATTGG GTATGTACAACGTGTCTGAGGCTAGAGACATTCTATCCCAGTCGTAGTCAGCCTGGTGCTCTT AATTCCTTGTACTACACTCTGAGCTGTACTTCTCTGATTGTATGTGAATGCTCGTGGTGAGCC TTTCTATCAGAGATGAGCTAGCATTGACACATAATAAATCATCACTCTCAATTAAAC CAATCCAGATCAATTCCTTCTGTAGTCTTCCATAATCTTCCATAATCCTCTATAATCCACTCTAT TACTCTAATTATCACTCCCAGTTTACCCTTCTTACAAAATTTGCATCCCACCGTTGACTCGTCC GTTGATGTCGTTGACGTTCGTGGTGTGTGGCCCGGCACACACGCTCACACGGTGCAACATC ATCCCCCTGTTGCTTACAACCTTCTTTACTACCACATCAACAATACTTAGAGTATTAAACAAA GTAAGCACAGTGAACACTCAATTGACATCTCAATAGCTAACCCCTTAACCCTAGTTTTACAA TTACCAACCATCCAATACGTTGCTGAACATAAACCAAAAGCTATCATCTTGGCTTCTCATTTAGGTAG ACCAAATGGTGAAAGAAATGAAAAAATATTCTTTAAAACCTGTTGTTGCTGAATTATCTTCATTATTAGG TAAACAAGTTACTTTCTTAAACGATTGTGTTGGTGATGAAGTTGAAAAAGCCGTTAATGGTGCCA+

Fig. 4.6 Sequence analysis of PGK promoter

Grey frames: TATA box, CAAT box; White frames: AGAGbox, TGTG cis-acting element; "_": initiation codon

YPD without Hygromycin B Hygromycin B, 80ug/ml YPD Fig. 4.8 Growing Conditions of *L. kononenkoae* before and after transformation

Next plans

D6DM and D6DRs expressed In Lipomyces kononenkoae and Trichosporon fermentans respectively.

 \bigcirc \triangle 5-, \triangle 4-, \triangle 12-, \triangle 15- Fatty acid desaturases and elongases

