Quality deterioration in commercial virgin coconut oil due to photooxidation and autooxidation

Raharjo, S.¹ and Rukmini, A.²

¹ Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University,

² Department of Food and Nutrition, Faculty of Agricultural Technology, Widya Mataram University, Yogyakarta, Indonesia

Introduction

- VCO and perceived health benefits
- Commercially available
 - □ Transparent bottles only
 - □ Secondary Packing (paper carton)
- Production method
 - Dedicated VCO processor
 - □ Collection of finished product
- Consumer's complaint
 - Objectionable odor
 - □ Wide variation in keeping quality

Objectives

- To determine the keeping quality of commercial virgin coconut oil (VCO) marketed by retailers around Yogyakarta
- To identify its probable cause of its quality deterioration.

Materials and Methods

- 18 brand of VCO products were obtained from the local retailers.
- Five packages, having the same volume, were selected from each brand.
- All samples were placed in styrofoam boxes with lid and were kept out from light and stored at refrigerated temperature prior to further analyses.
- A freshly prepared VCO packed in platic bottles with or without light protection were obtained from local VCO producer and used as a reference.
- 12 trained panelists were employed to perform sensory evaluation on odor and taste using a difference test method.

Materials and Methods (Continued)

- Chemical analyses were performed on
 - Free fatty acid (FFA), moisture, peroxide values (PV), tocopherol, carotenoids, and total phenolics content.
- Fatty acids composition of the VCO products were measured using GC equipped with FID detector.
- In order to observe the effect of photooxidation on the keeping quality
 - □ a freshly prepared VCO was placed in a transparent serum bottle with rubber caps and exposed to fluorescent lights at approximately 4000 lux for up to 6 hours at room temperature.
- Peroxide values of the samples were measured at 1 hour interval.

Results and Discussion

- 5 out of 8 commercial VCO product packed in transparent plastic bottles were found to have PV 1.2 - 9.1 meq/kg oil,
- 4 out of 7 of those products packed with secondary paper box have PV 1.1 - 4.9 meq/kg oil.
- Three flavored VCO products have PV 1.6
 5.9 meq/kg oil,
- PV of reference VCO was 0.14 meq/kg oil.

Results and Discussion (Cont'd)

- 3 out of 8 product packed in transparent plastic bottles have FFA content ranges from 1.1 to 3.1 %,
- All (8) of the products packed with secondary paper box have FFA content of less than 1.0 %.
- FFA content of reference VCO was 0.16%.

Results and Discussion (Cont'd)

- All of the VCO products contained tocopherol at level ranges from 404 - 460 ppm, while its carotenoid content of 32.4 - 43.4 ug/100g.
- Objectionable odor and taste were clearly detected by panelists on samples having PV of higher than 1.0 meq/kg oil.
- There was a significant positive correlation between PV and the presence of objectionable taste and rancid odor.

Results and Discussion (Cont'd)

- More than 90% of the VCO consisted of saturated fatty acids, but it still contains
 - □ oleic acid (6.5%) and
 - □ linoleic acid (1.5%)
- It could undergo lipid peroxidation with the presence of oxygen and/or light.
- It only takes only 2 hours of light exposure (4000 lux) for the freshly prepared VCO to have PV of 1.0 meq/kg oil.

Odor and taste scores of freshly prepared and commercial VCO

Correlation between peroxide values and odor scores of VCO

M

Correlation between peroxide values and taste scores of VCO

Conclusions

- This study confirmed that approximately 67% of the commercial VCO products in Yogyakarta suffered from quality deterioration in term of presence of objectionable taste and rancid odor.
- The VCO product packed without protection to light suffered most severly from photooxidation.
- It is therefore very crucial to minimize light exposure during VCO production.
- Once the VCO undergoes brief photooxidation, subsequent protection using light barrier packaging material will not effectively inhibit lipid autooxidation reaction during storage.

Acknowledgement

The authors wish to thank the Ministry of Research and Technology Republic of Indonesia for the provision of research grant in 2009 to support this work.