Thermomechanical method for the determination of the fractal dimension in fat crystal networks

Alejandro G. Marangoni University of Guelph Guelph, Ontario, Canada

Factors affecting the texture of fats and fat-structured foods

- 1. Solid fat content
- 2. Primary crystal habit (polymorphism)
- 3. Nano and Microstructure

 a. crystallite morphology and size
 b. spatial distribution of network mass
- 4. Inter-crystal interactions

What controls hardness?

Temperature (°C)	G´(Pa)	SFC (%)	F _y (N)	K (N/mm)
5	2.19E+07 ^a	90.5 ^a	602 ^a	231 ^a
15	2.64E+07 ^b	90.5 ^a	593 ^a	223ª
20	1.63E+07 ^c	80.5 ^b	312 ^b	90 ^b
24	4.08E+07 ^d	60.0 ^c	344 ^b	96 ^b

Means with a common superscript within a column are not significantly different (P>0.05).

Mazzanti, 2004

Modeling the microstructure and its relationship to the mechanical response of a fat

The Model

The Fractal Dimension

Structure-mechanical model

Fractal dimension defines size of cluster

►

Effect of D on the Elastic Modulus

Determination of the Fractal Dimension by Rheological Means

Weak-link Theory - Fat Crystal Networks

Developed for colloidal gels and adapted to fat crystal networks by our group:

G' ~
$$\Phi^{\mu} \sim \lambda \Phi^{1/(3-D)}$$

G' = dynamic shear elastic modulus (storage modulus) $\lambda =$ constant which depends on particle properties and particle-particle interactions $\Phi =$ solids' volume fraction of fat sample

$$G' = \lambda \left(\frac{SFC}{100}\right)^{\mu}$$

$$\ln G' = \ln \lambda + \mu \ln \left(\frac{SFC}{100}\right)$$

$$D = 3 - \frac{1}{\mu}$$

Small Deformation Dynamic Controlled Stress Rheometer

TA AR2000

Viscoelasticity of Fats

 $G''/G' \sim 0.1$

Shear strains of $\sim 0.1\%$ or less

G' frequency-independent

Dilute fat with vegetable oil

Thermomechanical Method for the Determination of the Rheology Fractal Dimension

Milkfat

Cocoa Butter

CIE FHCO-HOSO

Dilution Method (CO)

Thermomechanical Method

AMF 17%SFC

CIE ~15% SFC

CB 34% SFC

The fractal dimension (D) and λ parameter* for the three samples used in this study, determined by three different methods.

	D	λ (Pa)	r^2
AMF _d	2.83	1.254×10^{9}	0.7125
AMF _t	2.65	8.264×10^{7}	0.9185
AMF _c	2.68	8.121×10^{6}	0.9380
CB _d	2.72	1.631×10^{8}	0.4787
CBt	2.51	4.358×10^{7}	0.8060
CB _c	2.62	$2.186 imes 10^7$	0.6971
CIE _d	2.81	5.295×10^{9}	0.8622
CIE _t	2.71	1.283×10^{8}	0.8784
CIE _c	2.76	1.540×10^{7}	0.9876

 $_{d}$ indicates dilution method using small deformation oscillatory rheology t indicates thermo-mechanical method using small deformation oscillatory rheology c indicates thermo-mechanical method using cone penetrometry *The parameter λ is inversely proportional the size of the primary particles and directly proportional to the strength of their van der Waals' interactions

Acknowledgments

- Natural Sciences and Engineering Research Council of Canada
- Ontrario Ministry of Agriculture and Food
- Canada Research Chairs Program