

PRODUCTION OF OMEGA- 3 FATTY ACID CONCENTRATES FROM FISH AND ALGAL OILS AND THEIR STRUCTURAL ASSESSMENT BY NMR

Kralovec, JA¹, Weijie W¹, Barrow CJ² and Reyes-Suarez E¹

¹Ocean Nutrition Canada Ltd. Dartmouth, Nova Scotia, B2Y 4T6, Canada; ²School of Life and Environmental Science, Faculty of Science and Technology, 1 Pigdons Road, Geelong, Victoria 2127, Australia

LC-PUFA, OMEGA-3 vs. OMEGA-6

- □ LC-PUFAs are categorized by the position of the 1st double bond counting from the CH₃-terminal
- Location of the 1stdouble bond dictates biological activity
- □ All double bonds are CH₂-interruped
- \Box Omega-3 series starts with α -linolenic acid (ALA,18:3n-3)
- □ Omega-6 series starts with linoleic acid (LA,18:2n-6)
- □ The most studied omega-3 FA are EPA and DHA

Physiological role of very long chain o-3 fatty acids	Potential clinical benefit	Target
legulation of blood pressure Regulation of Ilatelet function	Decreased blood pressure Decreased likelihood of thrombosis	Hypertension; CVD CVD
Regulation of blood coagulation	Decreased likelihood of thrombosis	CVD
Regulation of plasma riglyceride concentrations	Decreased plasma triglyceride concentrations	Hypertriglyceridemia; CVD
Regulation of vascular function	Improved vascular reactivity	CVD
Regulation of cardiac rhythm	Decreased arrhythmias	CVD
Regulation of inflammation	Decreased inflammation	Inflammatory diseases (arthritis, inflammatory bowe diseases, psoriasis, lupus, asthma, cystic fibrosis, derm titis, neurodegeneration); CVD
Regulation of immune function	Improved immune function	Compromised immunity
Regulation of bone turnover	Maintained bone mass	Osteoporosis
Regulation of insulin sensitivity	Improved insulin sensitivity	Type-2 diabetes
Regulation of tumour cell growth	Decreased tumour cell growth and survival	Some cancers
Regulation of visual signaling (rhodopsin)	Optimised visual signaling Signalbildung	Poor infant visual development (especially pre-term)
Structural component of brain and central nervous system	Optimised brain development – cognitive and learning processes	Poor infant and childhood cognitive processes and learning

Calder. Schweiz. Zeit. Ernährungmedizin 2009, 5, 14-19

STARTING OMEGA-3 OIL SELECTION

- □ The richest and the cheapest source of EPA/DHA is fish oil
- □ Starting oils with right FA profiles and EPA/DHA content ~30%!
 - □ anchovy/sardine (18/12TG, for high level EPA concentrates)
 - □ tuna (05/25TG, for high level DHA concentrates)

EE CONCENTRATES

ETHANOLYSIS AND DISTILLATION

CONCENTRATION STRATEGY A

ETHANOLYSIS / DISTILLATION / GLYCEROLYSIS

R, a mixture of C14-C24 hydrocarbon residues,, primarily those of EPA and/or DHA R1, H or Et; i, CALB, 60-85 C, vacuum

Immobilized *Candida antarctica* lipase B (CALB) in Packed Bed Reactor
The reaction is driven forward by EtOH or water removal under vacuum

wellness through innovation

PACKED BED REACTOR

MANUFACTURING OF TG CONCENTRATES

- Green technologies (free or immobilized lipases)
- Packed bed reactors

□ First to introduce <u>food grade</u> immobilized lipase for EE –TG conversion !

i: CALB-L, EtOH/H₂O, 50 °C, vacuum ii: CALB-FPX66, glycerol, 70 °C, vacuum

~ 80 reactions on 1 batch of immobilized. enzyme!

CONCENTRATION STRATEGY B

HYDROLYSIS AND EPA (DHA) INSERTION

Hydrolysis: Lipo-JD, P buffer pH7.5, 40 °C, 42 h; EPA/DHA insertion: CALB, EPA/DHA source, 70°C, 24h

TIME COURSE OF 18/12TG HYDROLYSIS

POSITIONAL DISTRIBUTION (PD) OF EPA/DHA IN TG OILS

It is very likely that the oxidative stability and thus also sensory qualities of EPA/DHA rich TG oils and their TG concentrates correlate with the positional distribution of fatty acid residues, primarily EPA and DHA in TG molecules.

FACTS AND STRATEGY

Complexity

- □ Fish oil contains 30 to 60 different fatty acids
- Assuming 30 and taking into account positional distribution, theoretically 27000 different TGs

Chromatography

□ Complex mixtures, need for non-aqueous conditions

Mass spectrometry

Neutral compounds - poor ionization, difficulty adding reagents to mobile phase for adduct formation

NMR

Complex mixtures, limited data in the literature

10

SYNTHESIS OF STANDARDS

Wijesundera et. al. J. Amer. Oil Chem. Soc. 2007, 84, 11-21

¹³C NMR (preferred)

Better resolution (larger spectral range) than ¹H NMR, although lower sensitivity

CARBONYL (C-1) CARBONS (preferred)

- □ Carbonyls from sn-1,3- and sn-2 chains form clusters of peaks
- Within each cluster, chemical shifts differences between acyl chains occur as a result of the proximity to a neighboring double bond
- □ Unable to discriminate between *sn*-1 and *sn*-3 positions

Carbonyl region of the 125 MHz ¹³C NMR spectrum of a mixture of TG standards of seven fatty acids

BASIC FACTS

DHA

- □ Carbonyls from *sn*-1,3 chains resonate at higher chemical shifts than *sn*-2 chains
- □ Within each cluster carbonyls from saturated chains resonate at a higher chemical shift
- Chemical shifts are in a direct correlation with the distance of the carbonyl carbon to the first double bond
- Unsaturation on the γ-position (Δ4, DHA) induces a greater shift on carbonyl chemical shifts; DHA carbonyls resonate in a unique position, which allows a straightforward assignment

INVESTIGATED FISH OILS

- □ 18/12TG (sardine oil)
- Re-esterified 18/12TG
- □ 05/25TG (tuna oil)

QUANTITATIVE ¹³C NMR

- Under full-decoupling conditions nOe build up may differ for carbonyls of *sn*-1,3 and *sn*-2 chains
- Sn-1,3/sn-2 area ratios were measured for EPA and DHA carbonyls as a function of the relaxation delay for 18/12TG (100mg/0.7mL CDCl₃)

Area ratios for both EPA and DHA carbonyls remain constant after 12s delay (working range)

RE-ESTERIFICATION OF 18/12TG

The distribution of saturated and monounsaturated chains as well stearidonic acid (STA) remains unaffected

- The distribution of EPA and DHA chains is affected
 - □ EPA that was mostly in *sn*-1,3 is randomized on re-esterification
 - DHA that was mostly in *sn*-2 is located mostly in *sn*-1,3 on reesterification

05/25TG TUNA OIL

- Saturated and monounsaturated chains are preferably located in sn-1,3 positions
- □ EPA is present in equal amounts in both *sn*-1,3 and *sn*-2 positions
- DHA shows a slight preference for the *sn*-2 position

SUMMARY

- □ The evidence for the beneficial effects of omega-3 fatty acids FA, particularly EPA and DHA is undisputable.
- Science and innovation are the major drivers of dietary supplement and pharmaconutrient industry.
 - To deliver high quality omega-3 products the replacement of traditional chemistry by enzymatic technologies for manufacturing omega-3 based products is becoming more and more important.
 - □ The understanding of the positional distribution (PD) of the FA residues in the oils is of crucial importance since PD might be important for the stability, sensory and biological effects.
- ONC is leading the way in implementation of sophisticated manufacturing technologies and thorough understanding of physiochemical properties of omega-3 fatty acids.

THANK YOU !

