Integrated synthesis and separation of oil derivatives by supercritical carbon dioxide

Marta Lubary, Joop ter Horst, Gerard Hofland

Delft University of Technology – Process & Energy Dept.

World Congress on Oils and Fats & 28th ISF Congress Sydney, 29-9-2009

Challenge the future

Supercritical fluids for lipid processing

- Extraction/fractionation of specialty oils
- Vegetable oil refining (deodorization, neutralization)
- Recovery/concentration of high-value bioactive lipids from refined oils and agricultural waste
- Transesterification of oils in supercritical alcohols

2

Supercritical fluids

- Strong dependence of fluid properties on P and T
- Liquid-like density, gas-like viscosity (high diffusion coefficients)
- Fluid density determines solvent power

Supercritical carbon dioxide

- Non-toxic, "green" solvent \rightarrow suitable for food processing
- Mild (super)critical conditions (74 bar, 31 C)
- Non-polar solvent
 - dissolves non-polar and slightly polar compounds
 - solvent power decreases with solute molecular weight

Guclu-Ustundag O. et al, Ind Eng Chem Res 39 (2000) 4756-4766

SC-CO₂ as process solvent An integrated approach

- Solvent power tuneability of SC-CO2
- Well established technology

- Enhanced rates / reaction selectivity
- Extensive research
 - Possibility of integrating reaction with products separation

Oil ethanolysis

Simultaneous synthesis of partial glycerides and FAEE

FAEE

- Functionality depends on chain length
- Additives in food / pharma / cosmetics
- Intermediates in the production of structured lipids

Oil ethanolysis

Simultaneous synthesis of partial glycerides and FAEE

DAG

- Food grade emulsifiers
- Novel dietary fat product

MAG

Food grade emulsifiers

7

Experimental set-up

8

Lipases

- Specificity/selectivity of lipases allows tailoring reaction products
- Green processing
- Immobilized lipases used:
 - Candida antarctica lipase B (Novozym 435 ®, Novozymes A/S)
 - Pseudomonas fluorescens lipase (Immozyme IMMAPF-T2, Chiral Vision)

Synthesis of FAEE from milk fat

- Reaction product composition
 - Lipase selective for shortchain fatty acids
 - Mixed DAG/MAG in partial glyceride product
- Effect of CO₂ on reaction rate and selectivity*
 - Enhanced lipase selectivity

*Lubary M. et al, J Agric Food Chem 57 (2009) 116-121

Products separation by SC-CO₂

 High recovery of target product and good separation between short- and long- FAEE by SC-CO₂ extraction at 90 bar, 42 C

Integrated synthesis and extraction

TUDelft

Integrated synthesis and separation of oil derivatives by SC-CO₂ 12

Increased overall process selectivity

- Combination of
 - lipase selectivity
 - SC-CO₂ extraction selectivity

resulted in an improved separation between short- and long- FAEE

Raffinate	Extract
• long FAEE	 short FAEE
• MAG/DAG	Ethanol

IMMAPF-T2 - Results Synthesis

- Reaction product composition
 - Lipase produces DAG with high selectivity
- Effect of SC-CO₂ on reaction rate → unfavorable

Experiments at 40 C, E/FA=0.5, enzyme load 5%

IMMAPF-T2 - Results Products separation

- Good separation between FAEE and glycerides at 110 bar and 40 C
- Reaction followed by extraction gives best result in this case

IMMAPF-T2 - Results Products separation

Conclusion

- Synthesis and separation of edible oil derivatives was accomplished using immobilized lipases and SC-CO₂
 - Lipases allow tailoring reaction products
 - Efficient separation of FAEE results from SC-CO₂ extraction
- Lipase tolerance for high pressure/CO₂ presence determines the synthesis-separation integration possibilities
 - Novozym 435 produced a short-chain FAEE extract, and benefited from process integration
 - IMMAPF-T2 yielded a high purity DAG raffinate and a FAEE extract by ethanolysis and subsequent extraction

Acknowledgements

Friesland-Campina bv (Netherlands)

Feyecon bv (Netherlands)

Senter Novem (Netherlands)

