Quantification of Triacylglycerol Positional Isomers in Edible Oil by Recycle High-Performance Liquid Chromatography Coupled to Atmospheric Pressure Chemical Ionization Mass Spectrometry

Nagai, T¹, Mizobe, H¹, Ichioka, K¹, Gotoh, N², Matsumoto, Y², Yuji, H², Kuroda, I³, Wada, S²

- ¹ Tsukishima Foods Industry Co. Ltd., Edogawa-ku, Tokyo, Japan
- ² Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
- ³ GL Sciences Inc., Iruma-shi, Saitama, Japan

Introduction:

Scheme of recycle HPLC

Introduction: The structure of triacylglycerol positional isomer (TAG-PI)

A, B = Fatty acid

29 Sep. 2009, World Congress on Oils and Fats & 28th ISF Congress/ Sydney Australia

Introduction:

TAG composition of palm oil

Triacylglycerol Composition (%)										
Double Bond	0		1		2		3		more than 4	
	MPP	0.5	MOP	1.4	MOO	0.7	MOL	0.2	PLL	0.8
	PMP	0.2	MPO	0.2	PLP	6.3	PLO	6.0	OLO	1.4
	PPP	7.2	POP	23.7	PLS	0.8	POL	3.1	OOL	1.5
	PPS	1.0	POS	3.1	PPL	1.0	SLO	0.4	LOL	0.1
	PSS	0.1	PPO	6.9	SPL	0.1	SOL	0.2		
	PSP	0.7	PSO	0.6	POO	21.5	000	5.1		
			SPO	0.5	SOO	1.4	OPL	0.5		
			他	0.3	OPO	1.6	MOL	0.1		
					OSO	0.2				
					PSL	0.1				
					他	0.5				
Total		9.7		36.7		34.2		15.6		3.8

M: Myristic acid (C14:0), P: Palmitic acid (C16:0), S: Stearic acid (C18:0),

O: Oleic acid (C18:1), L: Linoleic acid (C18:2)

M. MacLellan, PORIM Bulletin, 11: 40 (1984)

29 Sep. 2009, World Congress on Oils and Fats & 28th ISF Congress/ Sydney Australia

Δ

Introduction: Palm oil TAG chromatogram by RP-HPLC

Introduction:

Previous studies for quantification of TAG-PIs

Introduction: The comparison between RP-HPLC and Ag⁺-HPLC

	RP-HPLC	Ag+-HPLC
Chemical and mechanical durability	good	poor
Reproducibility	good	poor
Separation of TAG-PI	not good	good

29 Sep. 2009, World Congress on Oils and Fats & 28th ISF Congress/ Sydney Australia

Introduction: Polymeric and monomeric ODS stationary phase

Introduction:

Scheme of recycle HPLC

Column: Inertsil ODS-P (5 μm, 250 mm x 4.6 mm I.D.) x2 (GL Sciences Inc.) Column temperature: 25 °C Mobile phase: Acetonitrile- 2-Propanol- Hexane (3:2:1, v/v/v) Flow rate: 1.0 mL /min Detector: UV 205 nm

I. Kuroda, T. Nagai, H. Mizobe, N. Yoshimura, N. Gotoh, and S. Wada, Analytical Sciences, 24: 865-869 (2008)

29 Sep. 2009, World Congress on Oils and Fats & 28th ISF Congress/ Sydney Australia

29 Sep. 2009, World Congress on Oils and Fats & 28th ISF Congress/ Sydney Australia

PO⁺=577

. . .

660

700

750

800

5776

678.5

579.3

600

551.5

560

FF35

PP⁺=551

TITTT

500

APCI-Positive mode Corona: 3.0 μA Desolvation gas: 600 L/h (350 °C) Cone gas: 50 L/h Ion source heater: 120 °C Cone voltage: 40 V

876.9 891.0

850

900

mp mp

1000

950

Methods: Optimization of MS parameters SRM transition of triacylglycerol, POP

Methods: Optimization of MS parameters Development of SRM channel

Precursor Mass	Product Mass	Cone Voltage	Collision Energy
850.98	551.5	40.00	26.00
850.98	577.7	40.00	24.00

Collision Energy Optimize Chromatogram for m/z 850.98 -> 577.7

Collision Energy Optimize Spectrum for m/z 850.98 -> 577.7

Results: UV and SRM chromatograms of authentic POP/PPO and palm oil obtained by recycle separation

Results:

Repeatability of retention times

	РОР	РРО	
MEAN	167.3	180.6	
SD	0.8	1.1	
RSD; %	0.47%	0.61%]

Results: The calibration curves and recovery of POP and PPO

Rate of TAG-PI in palm oil; %	22.4%	2.7%	12.2%	4.6%	2.9%	63.4%
Correlation coefficient (R^2)	0.983	0.014	1.5%	0.985	0.016	1.6%
Recovery rate; %	105%	9%	8.7%	99%	16%	16.0%
())						

(n=4)

Conclusion:

The target TAG-PIs, POP and PPO in palm oil can be selectively quantified by recycle HPLC-APCI/MS-MS.

Thank you for your kind attention.