

OMEGA-3 ENRICHMENT OF CHICKEN MEAT FOLLOWING THE CONSUMPTION OF OMEGA-3 RICH VEGETABLE OILS

Lilik Retna Kartikasari

Supervisors: Prof. Robert A Gibson Dr. Bob Hughes

Women's & Children's Health Research Institute Inc. Research for the future health of our children

Summary of the health benefits of n-3 LCPUFA

- Reduce heart disease (Nordoy et al, 2001)
- Prevent rheumatoid arthritis (Cleland and James, 2002)
- Prevent cancer (Bourre and Galea, 2006)
- Improve the development of neural and visual functions in infants (Lauritzen et al., 2004; Makrides et al. 2009)

- Omega-3 LCPUFA (20 and 22 carbons, EPA, DPA and DHA):
 - 650 mg/day
- Omega-3 PUFA (18 carbons, ALA):
 - 1.5 to 3 g/day
- Current Australian intake: ~250 mg/d omega-3 LCPUFA and 1.2g/d ALA

One strategy to increase n-3 LCPUFA in chicken meat: Add fish oil to chicken diets

- A diet enriched with fish oil increased the amount of omega-3 LCPUFA, EPA and DHA in chicken meat (Bou et al., 2005; Chekani-Azar et al., 2008).
- Problems:
 - Negative effects on the sensory properties of meat
 - Containing highly toxic chemicals (methyl mercury)

Another strategy; Feed ALA from vegetable oils so that chickens convert to n-3 LCPUFA

- Several studies have tested feeding diets rich in ALA to increased tissue ALA content
- Most studies failed to demonstrate a large increase in EPA, DPA and DHA in tissues
- Could be due to competition between the omega-6 and omega-3 fatty acids in the pathway

(Gonzalez-Esquerra et al., 2000; Bou et al., 2005)

Project Aims:

To examine the effect of ALA content of diets on the conversion and accumulation of EPA, DPA and DHA into chicken tissues.

Methodology

- Seventy unsexed 1-day old chicks (Cobb) were randomly allocated in seven pens and assigned to either a control diet or six experimental diets.
- Chickens were fed with experimental diets prepared from basal diet, and fat sources in the basal diet were supplemented with blended vegetable oils.
- Different fat blends were obtained by varying the proportion of different vegetable oils

DIETS

Diets contained an increasing proportion of energy (%en) as ALA while keeping the level of LA relatively constant

Methodology

Fatty acid analysis

The bottom chloroform layer was evaporated and spotted onto TLC plate

Chromatogram of tissue samples

Statistical analysis

A one way ANOVA was used to examine the effect on EPA and DHA concentrations, and the analysis was followed by the tukey test if there were significant differences (P<0.05) between dietary treatments.

RESULTS: Omega-3 LCPUFA in plasma and liver

Plasma PL

Liver PL

Effects of increasing levels of dietary ALA on omega-3 LCPUFA of plasma and liver tissues. Omega-3 LCPUFAs increased (P<0.001). The values presented are means of six replicate analyses \pm SEM

Chickens respond differently to dietary ALA than rats

Chicken Plasma

Changes in plasma DHA in chickens does not show the complex relationship to dietary ALA as seen in rats. Reasons are unclear.

Omega-3 LCPUFA in breast and thigh meat

Breast PL

ALA (% en) of diets

Thigh PL

Effects of increasing levels of dietary ALA on omega-3 LCPUFA of breast and thigh tissues. Omega-3 LCPUFAs increased (P<0.001). The values presented are means of six replicate analyses \pm SEM

How our results compare with other studies

LA to ALA ratio of diets

LA to ALA ratio of diets

How does meat from chickens fed high ALA diets compare with fish?

n-3 LCPUFA sources	EPA	DPA	DHA	Total n-3
	% of total fatty acids			
Breast (old diet)	0.7	1	1	3
Breast (new diet)	4	7	4	17
Australian Whiting	11	4	14	29

The omega-3 LCPUFA levels of meat from chickens fed diets high in ALA contain about 60% of the levels found in Australian Whiting.

Growth

There was no effect on weight gain by any of the diets

Results summary

- The increase in ALA content of diets increased the proportion of ALA, EPA, DPA and DHA in breast and thigh
- The highest ALA content (the lowest LA:ALA ratio) resulted in the highest total n-3 and PUFA
- Omega-3 LCPUFA levels reached 60% of the level seen in Australian whiting
- There was no significant effect of diets on the growth of birds.

CONCLUSIONS

- The accumulation of omega-3 LCPUFA in chicken tissues is directly related to ALA content in the diets
- There was no maximum level achieved for tissue EPA, DPA and DHA which suggests that there are different control mechanisms in the chicken than in the rat for LCPUFA synthesis
- Increasing the ALA content of feeds for broilers may be a useful strategy for increasing the omega-3 intakes of Australians

Acknowledgments

Prof. Robert A Gibson Dr. Bob Hughes Prof. Martine Boulianne Assoc Prof. Maria Makrides Dr. Mark Geier

Functional Food Group

Adelaide University SARDI APS/AUSAID Sebelas Maret University, Indonesia

When omega-3 LCPUFAs go up, what comes down ?

Effects of increasing levels of dietary ALA on the balance of omega-3, omega-6 and monounsaturates in chicken breast tissues.

Some omega-3 LCPUFA replace specific omega-6 LCPUFA

Breast PL

Thigh PL

Effects of increasing levels of dietary ALA on arachidonic acid (AA) of breast and thigh tissues. AA decreased (P<0.001). The values presented are means of six replicate analyses ± SEM