



## Optimising Canola Production in Diverse Australian Growing Environments

#### **Project Team**

Shannon Dillon

Chris Helliwell

Alex Boyer

Andrew Gock

Emmett Leyne

Bangyou Zheng

Ian Greaves

Julianne Lilley

Matt Nelson

Bill Bovill

Susie Sprague

Jeremy Whish

**Brett Cocks** 

Ari Verbyla

Jing Wang

Rob Coe

Geoff Bull

Jamie Scarrow





# Optimising canola phenology

Timing canola phenology to the optimal flowering window is essential to productivity

Challenge to predict optimal sowing time for varieties in different environments

- driven by genetics and environment
- field based screening required
- compounded by rapid variety turnover





start of flowering





## Genomic based tools – for crop management

#### Genomic based models for phenology prediction

- Crop modelling
  - 'omics to inform phenology parameters (vernal, thermal time)
- Predict phenology directly
  - 'omic and environmental inputs



Growers able to determine optimal sowing date

- maximise yield
- phenology app

#### **APSIM** plant models



Adapted from Holzworth et al 2014, Environmental Modelling and Software





## Genomic based tools – for breeding

#### Characterise genomic variation in phenology

- Genomic variants (SNP, transcript)
- Interactions (GxE, GxG)
- Pathways



Breeders able to select for allele combinations to target optimum start of flowering in different environments

- marker based interventions
- integrated multi-omic prediction methods







### Canola Diversity Panel





#### 690 varieties

- Modern AUS
- Global:
  - BRAVO
  - ASSYST

Core set of 350 varieties underpin data collection





# Agronomy, crop modelling • & phenology

- Field trials
- Controlled environments
  - daylength
  - vernalization















### ML computer vision – Post Doctoral Fellow







## 'omics platforms

- Transcriptomes low cost
  - Transcripts (~50K)
- Genome wide SNPs
  - 90K brassica array (~30K)
  - Transcript SNPs (~30K)
- Proteomes (wheat)













### Integrative analytics







# Model refinement and validation

Confidence in any phenology model will depend on...

> robust model validation in 'real-world' setting

Possible options for this project include

- > historical data where genotypes are available or can be generated
- > new trial data

Use NVT sites (2022)

- > Expand environment range
- > Validate and refine model
- > Inviting breeding companies including varieties in NVT to collaborate







## Thankyou

#### **Contacts:**

Chris Helliwell: <a href="mailto:chris.helliwell@csiro.au">chris.helliwell@csiro.au</a>

Shannon Dillon: <a href="mailto:shannon.dillon@csiro.au">shannon.dillon@csiro.au</a>