

Phenotyping for quantitative resistance to blackleg crown canker

<u>Susie Sprague</u>, Luke Barrett, Wendelin Schnippenkoetter (CSIRO) Angela Van de Wouw, Alex Idnurm (University of Melbourne) Steve Marcroft (MGP)

- Controlled by numerous QTL (some consistency between studies)
- Presumed to be stable, broad-spectrum resistance
- Masked by effective major gene resistance
- Field screen (ascospore inoculum)
 - visual crown canker severity/survival
 - larger number of lines
 - diverse environments (E) & blackleg populations (Gh) = high phenotypic variability
 - not repeatable
- Controlled environment screens (pycnidiospore inoculum)
 - lesion development & growth through the petiole possible predictors of QR
 - phenotyping method?
 - small number of lines
 - repeatable

Controlled environment experiment with 11 cultivars and 11 isolates.

Crown canker severity measured after inoculation of cotyledons.

- traditional visual scores qualitative, assessor bias
- quantitative measure of pathogen load
 - molecular (qPCR, ddPCR): specific to *L. maculans*
 - WAC: chitin-binding fluorescent tag
- 5 cultivars x 1 isolate x 14 replicate plants/timepoint glasshouse

9dpi	cotyledons/petioles	
12dpi	cotyledons/petioles	
4 weeks	crown	
start of flowering	crown	
maturity	crown	

- fungal biomass measurements accurate & repeatable, consistent between assays & across environments
 PCR assays specific and "high throughput"
- chitin assay good for detection at high pathogen loads but not specific, method is laborious

- few strands of hyphae in petiole, unable to detect with chitin assay
- low disease progression at crown (except in Westar) why?

Where is QR expressed in planta?

- tissues/timepoints to differentiate QR
- relationship between early and later levels of infection
- 5 host lines with range of QR x 3 isolates x 40 replicate plants
- inoculations on (1) cotyledons and (2) cut petioles of 1st true leaf Sampled:
 - T0 = cotyledon (12dpi)
 - T1 T3 = crowns (6 weeks maturity)
- fungal biomass using ddPCR robot

How reliable is infection in the glasshouse?

timepoint	N successful pcr assays	N undetectable infections	Proportion detectable
то	593	1	0.998
T1	598	122	0.796
T2	597	65	0.891
ТЗ	595	32	0.946

Bow does pathogen load progress through time?

Cotyledons (T0):

• High level of fungus cf. crowns

Crowns (T1-T3)

• Disease progresses from T1 – T3

Does fungal biomass relate to visual canker score?

QR identification in the crown prior to maturity

 detection at T1 (start of flower) predicts maturity for the 3 isolates tested

Can cotyledon disease load predict QR?

- No but could be used as preliminary screen for susceptibility
- wider screen of gremplasm

Nature of QR: broad spectrum or isolate specific

- No partial resistance to all isolates, but instead reacts with individual isolates differently
- Some cultivars are resistant or partially resistant to all isolates, suggesting they have broad QR.
- Rank across all isolates reflects blackleg ratings of the cultivars
- Screening with mixed inoculum?

Disease phenotype = Host (G_h) x Pathogen (G_p) x Environment (E) x M

How do we measure disease – visual score, molecular methods? Is resistance broad spectrum or isolatespecific?

When/where is resistance expressed?

Optimised to improve disease expression? What is the contribution of E?

- QR is complex interaction G x G x E
- Quantitative methods developed
- Early detection possible shorter screening time
- Cotyledon screen tool to eliminate susceptible lines wider set of germplasm/isolates required
- High level of variability in phenotype replication
- Environmental influence