

Resistance and avirulence genes Plant contains resistance genes (R genes) Pathogen contains avirulence genes (Avr genes) corresponding to R genes Fungus Genotype: avrRml1 (Virulent) Plant Genotype: Rlm1 Fungus undetected by plant INFECTION/DISEASE

Candidate B. juncea avirulence gene

- Previous work in Howlett lab identified junceaattacking blackleg isolates
 - These isolates attack all 92 B. juncea lines screened
 - Virulence towards B. juncea segregated as a single gene
 - Species-specific a/virulence gene in L. maculans

A/Virulence towards juncea mapped onto SuperContig7 of *L.maculans*

- Crosses set up between a junceaattacking isolate (IBCN18) and a nonattacking isolate (04P014).
- Both isolates virulent towards RIm6, a juncea-resistance gene introgressed into B. napus.
- 66 progeny were screened for virulence on juncea and with molecular markers
- A/virulence mapped to SC7

Candidate gene identified using RNAseq

- RNA-seq data from infected cotyledons (7 dpi) and in vitro growth used to identify genes highly upregulated in planta.
- · Within mapped region on SC7, three SSPs identified
 - two had low expression in planta
 - one (LemaT070880) up-regulated 5380 fold in planta

LemaT070880 is candidate avirulence gene

- LemaT070880 encodes a small secreted, cysteine rich protein located in AT-rich region
- RNA-seq data showed incorrect gene prediction in reference genome; correct annotation has earlier start codon.
- Gene sequenced from attacking and non-attacking isolates

Premature stop-codon in junceaattacking isolates

- Stop codon identified in juncea-attacking isolates
- Presence of stop codon shows 100% correlation with virulence in progeny

Allele	Isolates (frequency)	# of nucleotide changes	Coding sequence change	Phenotype on <i>B.</i> juncea cultivars
Lema_uP070880.2_0	34 (43%)	N/A	N/A	Avirulent
Lema_uP070880.2_1	18 (23%)	1	K ⁵⁵ R	Avirulent
Lema_uP070880.2_2	15 (19%)	1	K ⁵⁵ T	Avirulent
Lema_uP070880.2_3	9 (12%)	2	R ³⁸ L, K ⁵⁵ R	Avirulent
Lema_uP070880.2_4	2 (3%)	3	R ²⁹ Stop, R ³⁸ L, K ⁵⁵ R	Virulent

LemaT070880 confers avirulence towards Juncea cultivars - I

• Complementation construct made and transformed into juncea-attacking isolate

Conclusions

- LemaT070880 (*AvrLmJ1*) confers avirulence towards three *B. juncea* lines tested.
 - Possibly confers species-specific avirulence
 - Corresponding R gene unknown.
- Typical characteristics of avirulence genes
 - Secretion signal, cystiene rich, no homolgy, located in AT-rich region and highly up-regulated in planta
- RNAseq data in combination with mapping allowed identification of candidate gene