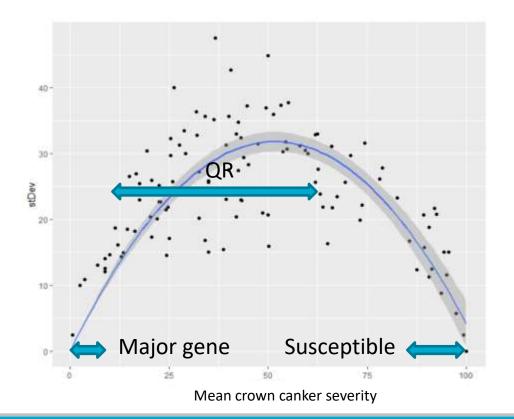
Phenotypic characterisation of quantitative resistance to blackleg in canola

CSIRO AGRICULTURE & FOOD www.csiro.au



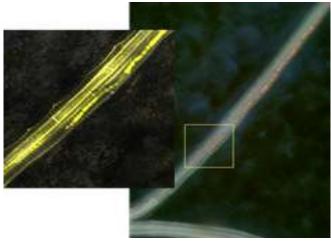
Quantitative resistance (QR)

- Critical for sustainable control of blackleg in Australia
- Difficult to phenotype
 - multiple minor genes involved apparently strong environmental effects (environment and/or pathogen population)
 - masked by effective major genes
 - presumed to be broad-spectrum, race non-specific
 - limited defined germplasm stocks(some consistency between studies)
- Lack fundamental knowledge on interaction & repeatable screening method

High level of variation for QR

Controlled environment experiment with 11 cultivars and 11 isolates.

Crown canker severity measured at maturity following inoculation of cotyledons.


Disease phenotype = Host (G_h) x Pathogen (G_p) x Environment (E) x M

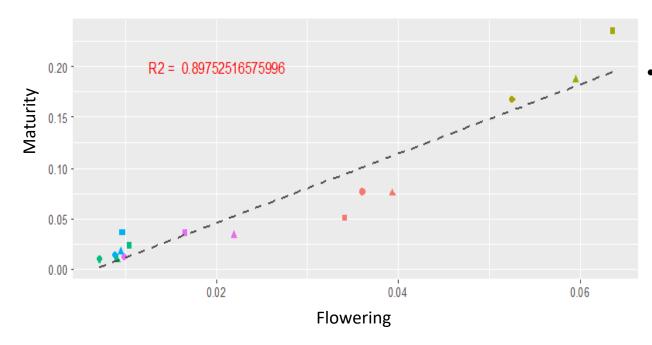
How do we measure disease – visual score, molecular methods? Is resistance broad spectrum or isolate-specific? Pycnidiospores/ascospores

When/where is resistance expressed? Influenced by major genes? What is the contribution of E? Controlled environment/field? Optimised to improve disease expression?

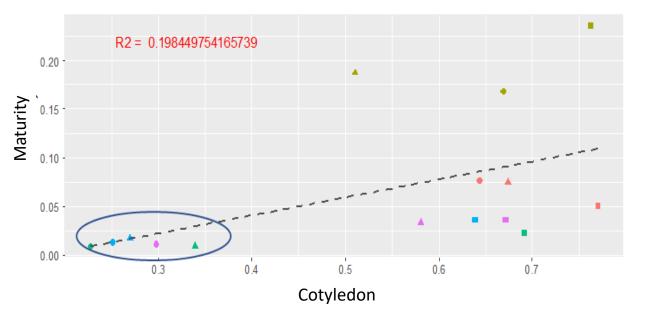
Disease phenotype

- Measurements in different tissues cotyledons/leaves, petioles, stems
- Quantitative and non-subjective assays
 - PCR specific to *L. maculans* & high resolution
 - chitin not specific to blackleg & lower resolution
- Quantification in absence of visual symptoms
- Consistent between assays, sensitive

Schnippenkoetter et al. 2021


Genotype_{host} (G_h): where is QR expressed?

- fungal biomass using ddPCR robot
- tissues/timepoints to differentiate QR
- relationship between early and later levels of infection
- 5 host lines with range of QR x 3 isolates x 40 replicate plants
 - ✓ cotyledons
 - x petioles
 - ✓ crowns (6 weeks maturity)
- variability reduced cotyledon, crown canker

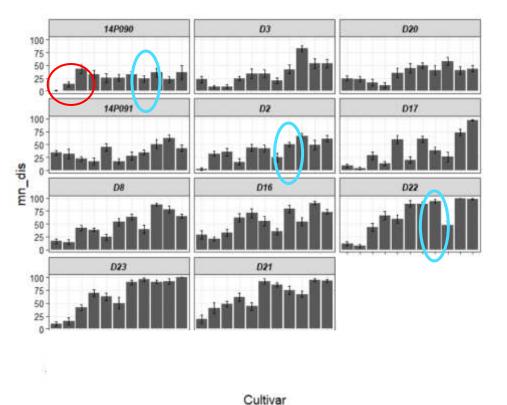


QR identification in the crown prior to maturity

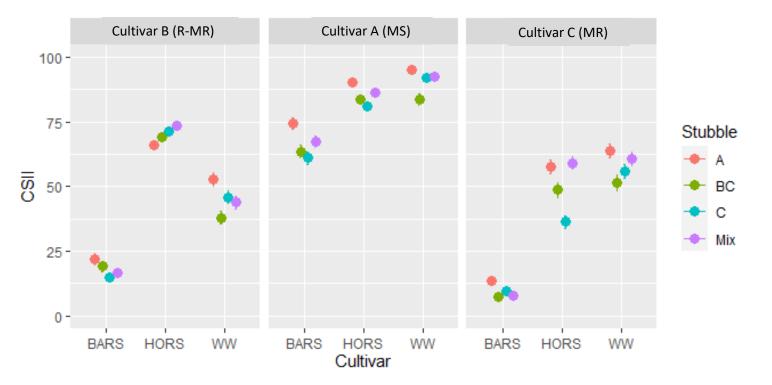
 detection at start of flower predicts maturity

Does cotyledon disease load predict QR?

- No but could be used as preliminary screen for susceptibility
- wider screen of gremplasm


G_h: influence of major genes on QR

9


- Larger lesions in presence of Rlm1 & Rlm4 in combination
- Small number of lines tested, requires repeating
- Does this effect persist through to crown canker?

Genotype_{pathogen} (G_p): broad spectrum or isolate specific

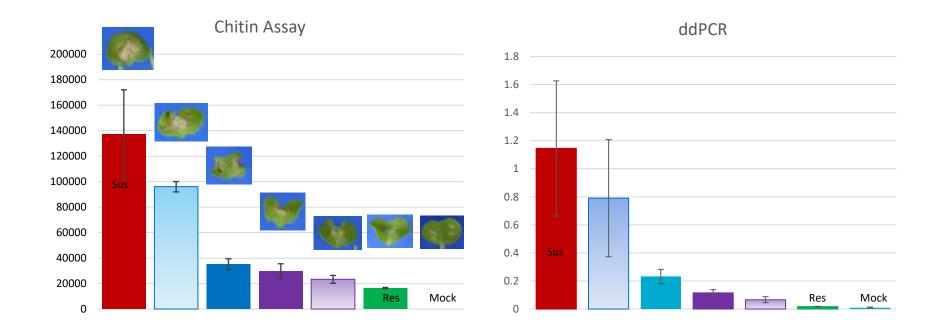
- No partial resistance to all isolates, but instead reacts with individual isolates differently
- Some cultivars are resistant or partially resistant to all isolates, suggesting they have broad QR.
- Rank across all isolates reflects blackleg ratings of the cultivars
- Combinations of QTLs or broadspectrum QTLs?
- Screening with mixed inoculum?

Environment (E):

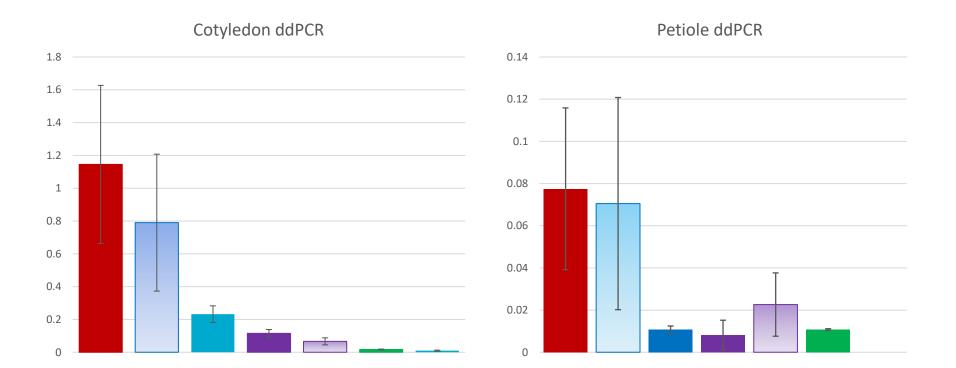
sig. effects of environment, host genotype

Summary

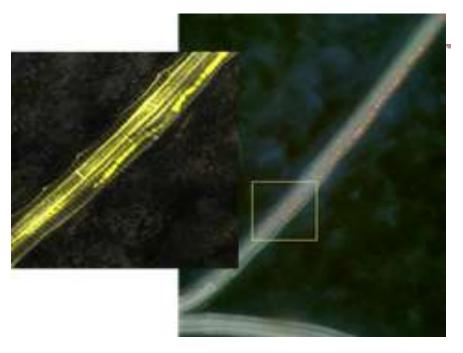
- QR expressed in cotyledons and crown, not petioles
- variability not due to mechanism of inoculation - biological
- Blackleg disease phenotype is extremely complex
- Large environmental effect
- Screening with single/population inoculum for detection of QTL's?



Development of genetic resources


- Westar x Darmor-bzh DH population
 - bulking up
 - phenotyping for blackleg and developmental traits
- susceptible background
 - Future resource for introgression of QTLs and major genes

Bioassays detect biomass differences in cotyledons



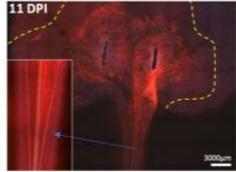
CSI

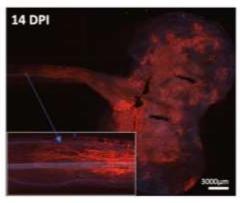
ddPCR detection in different host tissues

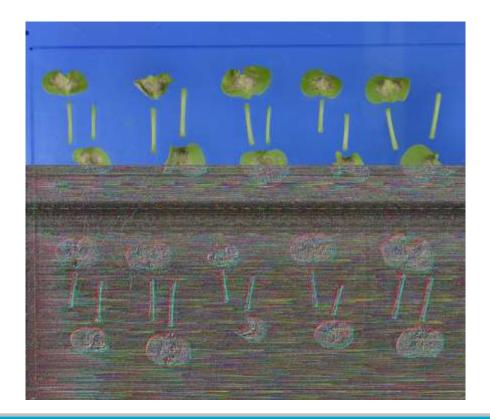
Fluorescence microscopy

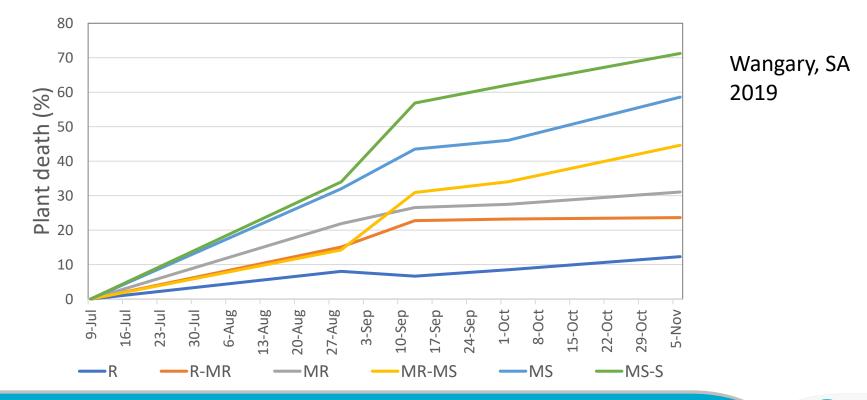
Westar

6 DPI


11 DPI


14 DPI


A minor setback!



2. Higher throughput phenotyping

3. Genetic stocks – measurable effects of defined single and multiple QTL's

QR phenotype components

LepQ-A01	?
LepQ-A08	?
LepQ-C06	?
LepQ-A01+ LepQ-A08	?
LepQ-A01+ LepQ-C06	?
LepQ-A08+ LepQ-C06	?
LepQ-A01+ LepQ-A08 + LepQ-C06	?

- LepQ-A02 (ex Darmor) to be added
- Available stocks in Topas background
- Introduce stocks into susceptible derivative devoid of resistance suppressor

Collaborators- AgCanada

4. Blackleg adaptation to QR

Row Labels	R gene	Blackleg rating	D2	D3	D8	D16	D17	D20	D21	D22	D23	Average
ATR-Bonito	Α	MS	50	42	39	79	39	40	74	94	96	62
ATR-Mako	A	MR	16	24	39	63	13	11	62	66	69	40
AV-Sapphire	В	?	43	34	54	55	21	45	93	89	50	54
BASF3000TR	В	MS-S	62	54	65	73	98	43	94	98	100	76
DG408	AC	MS	25	20	64	35	61	50	86	89	91	58
Hyola575	BF	R	3	23	16	29	9	25	19	12	10	16
Hyola580CT	BC	R-MR	33	9	14	21	4	23	41	7	15	18
Pioneer43Y92	В	R-MR	36	9	42	33	29	17	49	43	41	33
PioneerSturt	С	MS-S	49	53	78	91	74	40	95	99	92	75
Stingray	С	MR-MS	44	34	25	71	60	35	44	59	63	48
Tornado	В	?	66	83	88	55	26	58	67	47	91	65

4. Blackleg adaptation to QR

Blackleg rating	Average CSII
R	21
R-MR	18
R-MR	33
MR	40
MR-MS	48
MS	62
MS	58
MS-S	76
MS-S	75

Next steps

1. Finescale phenotyping

- tissues/growth stages to differentiate QR response
- improved disease expression
 - inoculum pycnidiospores vs ascospores
 - environment

2. Higher throughput phenotyping

- repeat measures in disease nurseries
- exploit under controlled conditions

24

Next steps

3. Genetic stocks

- Bulk & screen Canadian germplasm single/multiple QTL NIL's
- Darmor-bzh crosses
- Identifying appropriate susceptible background for crossing

4. Blackleg adaptation

- screen progeny from 'vir' x 'avr' crosses

- Controlled environment screens (pycnidiospore inoculum)
 - literature suggests lesion development & growth through the petiole possible predictors of QR
 - biologically relevant phenotyping method
 - small number of lines
 - repeatable?
 - relevance to field
- Field screen (ascospore inoculum)
 - visual crown canker severity/survival
 - large number of lines
 - diverse environments (E) & blackleg populations (Gh) = high phenotypic variability
 - repeatability?

