CENTRE FOR CROP AND DISEASE MANAGEMENT

School of Molecular and Life Sciences, Curtin University

Sclerotinia resistance in Australian germplasm and genomic selection as a tool for expediting Sclerotinia resistance breeding

Mark Derbyshire 05/02/2020

Current status of Sclerotinia resistance

- 'New generation' AAF Canada lines (Lone Buchwaldt):
 - PAK54
 - PAK93
 - DC21
 - K22

(Gyawali et al., 2016. Molecular Breeding)

- International Rapeseed Congress 15:
 - Crossed with elite Canadian varieties
 - Backcrossing and QTL-based selection
 - Ongoing
 - Some not 'double low' status

Released 2009 in Canada

Stem inoculation method

'academic standard'

Curtin University

Two different kinds of screen

no temperature regulation isolate CU11.19 inoculated same time

temperature regulation isolate CU8.24 inoculated 50 % flowering

Why test a different isolate?

'academic standard' assumes same response to all isolates

seems more-or-less the case

Why control for time of inoculation relative to flowering?

Centre for Crop and Disease Management

GRDC

Correlation goes away when inoculation timing controlled

Several candidates in existing Australian germplasm and commercial lines

black

firm

.

soft

collapsed

Centre for Crop and Disease Management

Aus. com. Bonito

Expediting breeding with genomic selection

(A) TRN and TST populations in genomic selection

Crossa et al., 2016. Trends in Plant Science.

Population structure of varieties genotyped so far

- 233 variety genotypes to obtain (incl. 100 ASSYST).
- 193 so far 93 new from UWA collaboration.
- 40 to be downloaded / provided by Batley lab.

Larger population shows improvement in accuracy over last meeting's presentation

All models ~ 0.3-0.35 R² 193 ASSYST + AGG varieties

Increasing training population size increases accuracy

Improvement from 33-183 training population size.

Larger population = further improvements?

(233 varieties total)

Conclusions and future directions

- Conclusions:
 - Several varieties, presumably suitable to Australian conditions, with Sclerotinia resistance.
 - Resistance not correlated with late flowering.
 - Different isolates produce similar results.
 - Genomic prediction has good potential.
 - Larger training population = increased accuracy.
- Future directions:
 - Confirmation of new resistance sources multiple isolates.
 - Genomic prediction accuracy between isolates.
 - Correlation with field data such as disease nursery.
 - QTL priors to increase genomic prediction accuracy.

Thank you to all involved

Acknowledgements

Jacqui Batley Anita Severn-Ellis Aneeta Pradhan Nur Shuhadah Mohd Saad UWA students

Yuphin Khentry Toby Newman Lars Kamphuis Roshan Regmi Akeem Taiwo Virginia Mwape Matt Denton-Giles

Lone Buchwaldt

THANK YOU

Mark Derbyshire, Research fellow, CCDM + 61 (0)8 9266 2369 mark.derbyshire@curtin.edu.au @Dr_M_Derbyshire **Y**

