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Genomic Selection 

• Useful for traits where variation is 
contributed by large number of loci; e.g. 
yield

• Large benefit for traits that are difficult 
or expensive to measure, or are 
measured late in breeding cycle

• Accelerate genetic gain by reducing 
generation interval, as well as increasing 
accuracy and intensity of selection

Consensus that genomic selection 
is simplest and most robust method 

for genomic-assisted breeding

Canola Reference Populations

600+ spring and winter canola accessions assessed for multiple traits including blackleg, plot yield, height, 
flowering time and seed quality in replicated trials in Horsham and Lake Bolac area, Victoria

Field phenotyping
Year 2015
• 600 accessions in 2 locations 2 reps each
• Traits: blackleg resistance, emergence, survival, internal infection

Year 2016
• 200 accessions in irrigated and rain-fed trials, 2-3 reps each
• Agronomic traits measured

Year 2017
• 200 accessions in irrigated and rain-fed trials, 2-3 reps each
• Agronomic traits measured

Year 2018
• ~1200 accessions (DHs and parents) in 1 location 2 reps (rain-fed)
• Traits: blackleg resistance, emergence, survival, internal infection

Phenotypes

• Phenotypes spatially 
corrected with AR1 models to 
account for in-field variability

• Traits
– Blackleg disease

• Adult plant survival, average 
internal infection

– Agronomic traits
• Emergence, vigour, lodging, 

flowering, plant height, maturity, 
yield

– Seed quality
• Archidic, eicosenoic, 

glucosinolates, linoleic, linolenic, 
oleic, palmitic, stearic acids, oil 
and protein content, moisture

Genomic heritability
• Spring lines

DNA extraction

DNA shearing

Target enrichment

Library prep

Sequencing

RNA extraction
(Target enrichment)

RNA shearing

Library prep

Sequencing

Transcriptome genotyping-by-sequencing
• Protocol aimed at delivering SNP genotyping at minimal cost per sample
• Reduced cost of sequencing library prep through volume reduction
• Genome complexity reduction
• Open platform does not require manipulation of restriction enzymes or primers
• All SNPs are genic

Genotyping

Genotyping-by-sequencing (GBS)
• 488 spring and winter accessions
• Call SNP in RNA sequence from leaves
• ~60,000 to 90,000 high quality SNP

Genomic relationship based on SNP 
markers

Spring lines with 
Winter background

Winter lines

Spring lines

Genomic Selection Methods

• Genomic Best Linear Unbiased Prediction

(GBLUP)

• Genomic relationship matrix

• BayesR

• Bayesian genomic selection method

• BayesRC

• Bayesian genomic selection method that can used prior

knowledge on QTL (biological priors)

• Cross validations: 10 fold CV for the whole set and 

winter lines, 5 fold for spring lines. 
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Genomic Selection Accuracy Across All Traits 

Parameters GBLUP BayesR

Sites Traits
Whole 
pop.

N=532

Winter 
lines

N=326

Spring 
lines

N=206

Whole 
pop.

N=532

Lake 
Bolac

Emergence
count

0.43 0.40 0.45 0.37

Survival rate 0.74 0.67 0.52 0.76
Av. Internal 
infection

0.70 0.67 0.48 0.65

Green 
Lake

Emergence
count

0.35 0.19 0.44 0.31

Survival rate 0.58 0.62 0.49 0.58
Av. Internal 
infection

0.65 0.67 0.46 0.64

Genomic Prediction Accuracy
• Spring lines only
• GBLUP 

Extending genomic selection to exploit key breeding program 
features 

• Optimal haploid value (OHV) selection
– Focus on haplotypes to select accessions that have greatest 

potential to produce elite doubled haploid offspring

Parent 1     x     Parent 2

F1

Selfing Doubled Haploid

Inbred line

Inbred line

Extension of Genomic Selection 

Optimal Haploid Value Background

Optimal Haploid Value (OHV)

Step 1  OHV on F1 if heterozygous parents are used

Step 2 Haploid values (HV) are estimated for each 
haploid genome segment

• Predict in silico, from optimal haploid value, 
the best DH that can be produced from that 
line 

• Note: the line with the highest OHV may not 
be the plant with the highest GEBV

Step 3 Create DHs from the best line and genotype. 
Continue generating DHs
until the OHV, or an individual very close to the OHV us 
created. DH closest to OHV of the original plant 
becomes the new variety                     

Optimal Haploid Value (OHV)

Simulated OHV and GS in long-term breeding programs in wheat and corn

More genetic gain and less loss of genetic diversity with OHV

More genetic gain More genetic diversity

Optimal Haploid Value (OHV)

Advantage of OHV depends on number of segregating plants screened and number of DH produced 
per plant.

Genomic and OHV Selection Validation Study

200 Spring 
Reference Lines

- GBS genotype
- Pick matings that 

maximise F1 
diversity

100 F1 
Crosses

- Cross pairs of F1, including 
DAS hybrids

- Pick matings with high, 
medium and low GEBV 
blackleg resistance

75 4-Parent 
Crosses

Pick OHV and GS DH Parents
• Skim WGS genotype
• Pick 66 4-parent plants on OHV 

• (10 low, 10 middle, 20 high)
• 20 high GS

• Generate 50 DHs per plant

2500 DHs 

- Grow DHs in 2 reps at one 
location

- genotype DHs 

Empirical Validation
• Correlate genomic breeding value 

and DH phenotypes
• Correlate OHV of 4-parent plants 

with DH phenotypes

Jul 2015 Oct 2015 Aug 2016

Jun 2018

Jun 2019
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OHV Validation Study

OHV Validation Tests

Phenotypic comparisons (survival)
• Difference between OHV-H, OHV-M, and OHV-L sets
• Difference between OHV-H and GEBV-H sets
• Top DH, groups means, meanTop10
• Genetic gain

Comparisons of phenotypes with GEBVs
• Accuracy of GEBVs

– Original parents
– DHs

• Across all sets and with each

Methods
• Survival marker effects for GEBV and OHV 

calculation estimated using BayesR and 2015 
blackleg field trials

• Overlap of GBSt and SWGS markers then imputed 
and phased (Beagle and Eagle)

• ~30,000 SNP

• 4 groups of DH parents chosen
• High OHV, High GEBV, Medium OHV, Low OHV
• Considerable overlap in high groups

• DHs, DH parents, and original parents planted in 
blackleg nursery 

• 1 location with 2 reps per entry
• Collected emergence, survival and internal infection 

phenotypes

• Survival phenotypes spatially corrected with AR1 
model

• BLUPs used as adjusted phenotypes

OHV Validation Study

Number of DHs per parent plant in field trial
• Aim was 50 DHs per plant

• Number DHs
• Mean number of DHs in GEBV-H was 18.5 (range 1 – 46)
• Mean number of DHs in OHV-H was 23.4 (range 1 – 90)

• Correlation of number of DH progeny and Survival BLUPs
• GEBV-H 0.66
• OHV-H 0.53
• Larger DH progeny groups had higher GEBVs and OHVs
• A limiting factor for validation study

• Reasons for fewer than 50 DHs produced
• Some plants not amenable to DH production
• Not all DHs produced seed or enough seed for field trial

OHV Validation Study

Set Mean BLUP StDev BLUP Top BLUP Name or
Parents of Top 
Line

Mean 
Top10 
BLUE

Genetic Gain
Top10

Original Cultivars 51.80 19.07 90.32 CC05006 78.73 -

GEBV-H 64.47 15.09 90.87 VIC015/AV-RUBY//
VIC058/ATR-
STINGRAY

87.86 11.6%

OHV-H 62.86 17.90 93.00 VIC005/AV-JADE//
VIC049/RT076

87.72 11.4%

OHV-M 51.34 16.72 63.84 - 56.03 -28.8%

OHV-L 30.61 16.74 45.46 - 39.27 -50.1%

• Highest survival was a DH from OHV
• Mean of Top10 DHs equal between OHV-H and GEBV-H sets
• Standard deviation of OHV-H set higher than GEBV-H set
• Clear differentiation between OHV-H, OHV-M, and OHV-L sets

OHV Validation Study

• Equal performance of GEBV-H and OHV-H sets
• OHV-H set more variable than GEBV-H set
• Clear differentiation between OHV-H, OHV-M, and OHV-L sets
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DGV-H OHV-H OHV-M OHV-L ParentsChecks

OHV Validation Study

Set GEBV Acc
Green Lake

GEBV Acc
Wyckliffe

GEBVmean Acc
Both sites

Original Parents 0.60 0.66 0.66

All DH sets 0.59 0.61 0.61

GEBV-H 0.14 0.05 0.11

OHV-H 0.15 0.14 0.16

OHV-M 0.14 0.02 0.09

OHV-L 0.17 0.41 0.32

• Accuracy of GEBVs in original parents high
• Accuracy across all DHs also high
• Accuracy in DH sets reduced especially high and medium sets

– Sets are highly selected

• Accuracy of OHV-L set higher than other sets

*GEBV accuracy = correlation of BLUPs and GEBVs

OHV Validation Study
Original Parent OHV GEBV

VIC054 6 4
AV-RUBY 5 2
RT076 5 6
VIC058 5 6
ATR-STINGRAY 4 3
VIC007 4 2
AV-SAPPHIRE 3 2
RT001 3 1
RT078 3 2
VIC015 3 0
VIC017 3 3
VIC033 3 4
ATR-SUMMITT 2 2
AV-JADE 2 7
CC05006 2 4
RAINBOW 2 1
RT059 2 2
VIC005 2 4
VIC009 2 4
VIC018 2 2
VIC049 2 3
VIC052 2 2
VIC059 2 1
CC05015 1 0
MUSTER 1 0
RT005 1 0
RT096 1 0
VIC010 1 1
VIC037 1 0
RT148 0 2
VIC003 0 1
VIC006 0 1
Number of Unique Parents 29 26
Dhparents (families) 19 18

GEBV 3+ times selected
OHV 3+ times selected
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Summary

• Reference populations implemented for key traits including blackleg resistance

• Genomic prediction accuracy at a level that allows immediate implementation of genomic 
selection

• Genomic and OHV selection equal genetic gain
– Likely due to lowish DH number per family achieved
– Confirmed trends in simulations

• OHV selection results in more diverse breeding population
– Important for long-term genetic gain
– More prediction power for genomic predictions?

• Balance between quantitative and qualitative resistance for blackleg

• Exciting time in canola breeding!
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