CENTRE FOR CROP AND DISEASE MANAGEMENT

School of Molecular and Life Sciences, Curtin University

Towards effector-assisted breeding for Sclerotinia resistance

e-mail: toby.newman@curtin.edu.au

Sclerotinia sclerotiorum arsenal

- Oxalic acid
- Cell wall degrading enzymes (CWDEs)
- Effectors

McCaghey et al., 2019

Phytopathogen-derived effectors

Effector = a molecule that promotes infection

Cock et al., 2013

Typically small secreted proteins

Effector functions:

- Induce cell death
- Suppress defence
- Evade defence
- Enable pathogen growth

Necrotrophic effectors hijack host immune system

Nature Reviews | Genetics

Dodds & Rathjen, 2010

- Effector-triggered immunity (ETI) is a rapid, robust defence response to biotrophic pathogens.
- Can be hijacked by necrotrophic pathogens to induce cell death and cause susceptibility.

NLR = NB(S)-LRR = Nucleotide binding-site and leucine-rich repeat immune receptor

Characterized *S. sclerotiorum* effectors

Gene name	Protein	Function	Localisation
Ssv263	Hypothetical secreted protein	Virulence	
SsCVNH	Secreted protein	Virulence, sclerotial development	
Ss-Caf1	Secreted protein with a putative Ca ²⁺ -binding EF-hand motif	Appressorium formation, sclerotial development, induction of host cell death	Inside host cells
SsSSVP1	Secreted protein	Virulence, induction of host cell death	Inside host cells (mitochondria)
SsCP1/SsSm1	Cerato-platanin protein	Virulence, sclerotial formation, induction of host cell death	Apoplast
Ss-Rhs1	Rearrangement hot spot repeat-containing protein	Virulence, sclerotial formation, appressorium formation	
SsNEP1	Necrosis-and ethylene- inducing peptide	Induction of host cell death	Apoplast
SsNEP2	Necrosis-and ethylene- inducing peptide	Induction of host cell death	Apoplast
SsITL	Integrin-like protein	Virulence, defence suppression	Inside host cells

Induce cell death

Suppress defence

S. sclerotiorum effector candidates

Secretion signal > lack transmembrane domain > lack GPI-anchoring domain > EffectorP

Secretion signal > lack transmembrane domain > lack GPI-anchoring domain > in planta expression >

- 1) Sequence/motif/predicted function conserved in fungal effectors
- 2) Belong to duplicated gene families and signatures of positive selection
- 3) Analogous to known protein folds

Secretion signal > small > cysteine rich > lack transmembrane domain > lack GPI-anchoring domain

Cytoplasmic effector candidates

Effector cloning

- Clone coding sequences from isolate CU8.24 gDNA/cDNA.
- Screen for necrosis and localization in *Nicotiana* benthamiana.
- GFP fusion enables detection of expression and subcellular localization analysis.

OGTR, 2018

SsPE3 triggers necrosis

Analyse subcellular localisation with confocal microscope

- No predicted domains.
- Upregulated on canola & soybean (Derbyshire et al., 2017; Westrick et al., 2019).
- Conserved in S. sclerotiorum isolates found on Lupinus angustifolius and Lupinus mutabilis (Mousavi-Derazmahalleh et al., 2019).

Derbyshire et al., 2017

Validate requirement for virulence

- Knockout effector candidates that elicit necrosis and assay for reduced virulence on canola.
- Targeted transformation demonstrated for generation of a GFP-expressing strain.

Do necrosis-inducing effectors hijack the host immune system?

Barbacci et al., preprint

NLR = NB(S)-LRR = Nucleotide binding-site and leucine-rich repeat immune receptor

- NLR identified as a susceptibility gene to S. sclerotiorum.
- Is this NLR targeted by an effector?

Do necrosis-inducing effectors hijack the host immune system?

N. benthamiana plants

In collaboration with Kee Hoon Sohn lab, POSTECH, South Korea

Effector-assisted breeding in canola

Diverse collection of ~240 B. napus accessions.

- Generate biparental mapping population and screen with effector.
- Develop markers linked to effector (in)sensitivity.

Acknowledgements

CCDM

- Lars Kamphuis
- Mark Derbyshire
- **Yuphin Khentry**
- Roshan Regmi

Collaborators

- **Dwayne Hegedus**
- Shirin Seifbarghi

Agriculture and Agri-Food Canada

Kee Hoon Sohn

THANK YOU

Toby Newman, CCDM

+61 (0)8 9266 3433

toby.newman@curtin.edu.au

School of Molecular and Life Sciences, Curtin University

