Fungicide resistance in Australian *Leptosphaeria maculans* populations

Angela Van de Wouw The University of Melbourne

Fungicides have become and integral part of controlling blackleg disease in Australia

- Fungicide options available
 - Seed dressings DMI and soon to be SDHI
 - Fungicide amended fertilizer DMI
 - Foliar fungicides DMI, SDHI, QoI

What is the status of fungicide resistance in Australia?

Untreated plot in disease nursery

Jockey-treated plot in disease nursery

288 stubble populations submitted for screening from across Australia

• Information collected includes location, cultivar use and fungicide use

in planta screen allows millions of isolates to be screened per population

Prosaro	Aviator XPro		
Veritas	Miravis		
Maxim	Flutriafol		
Untreated	ILeVo		
Saltro	Jockey		

Treatments randomised 3 replicate trays

30 hrs

Percentage of infected cotyledons is recorded 17 days post infection and used to determine frequency of populations with fungicide resistance

Untreated Miravis (SDHI)

Flutriafol (DMI)

Jockey (DMI)

Cut offs for resistance classifications determined using ANOVA and LSDs

No resistance detected towards new chemistries

		2018 results			2019 results		
Fungicide	Class	High	Mod.	Low	High	Mod.	Low
Saltro	SDHI	0%	0%	100%	0%	0%	100%
Veritas	Strobolurin + DMI	0%	1%	99%	0%	3.1%	96.9%
Aviator XPro	SDHI + DMI	0%	0%	100%	0%	0%	100%
ILeVo	SDHI	0%	0%	100%	0%	0%	100%
Miravis	SDHI	0%	0%	100%	0%	0%	100%

Untreated (UT)

Miravis

High levels of resistance are being detected for the DMI fungicides

		2018 results			2019 results			
Fungicide	Class	High	Mod.	Low	High	Mod.	Low	
Flutriafol	DMI	28.6%	31.6%	39.8%	25.1%	22.0%	52.9%	
Jockey	DMI	22.4%	31.6%	45.9%	20.4%	24.6%	55.0%	
Prosaro	DMI	7.1%	17.3%	75.5%	7.3%	13.1%	79.6%	

Untreated (UT)

Jockey

Fungicide resistant isolates were cultured to allow further characterisation of the mechanisms involved

Isolates were also screened for fungicide resistance *in vitro*

Resistance factor ranges:

Tebuconazole: 1.9 – 7.6

Fluquinconazole: 1.8 – 6.9

Flutriafol: 1.2 – 14.6

Prothioconazole: 1.1 – 4.4

Not all isolates showed *in vitro* responses

Insertions in promoter region of ERG11 (Cyp51) responsible for resistance in some isolates

Insertion in promoter responsible for increased gene expression *in vitro* and *in planta*

Complementation and genetic mapping confirms promoter insertion responsible for resistance

Implications for industry

- No resistance detected for new SDHI and QoI fungicides
- Although 25-30% of populations have resistance to flutriafol and/or jockey, currently unknown what proportion of the isolates within these populations are resistance
 - Therefore impact on fungicide efficacy currently unknown
 - Will develop molecular marker for screening populations to determine frequency of resistance within a population
- Not all fungicide resistant isolates had insertion in promoter therefore other mechanisms of resistance yet to be identified
- Screens will be repeated in 2020, to submit samples please email angela@grainspathology.com.au

Acknowledgements

- Steve Marcroft and team at Marcroft Grains Pathology
- Agronomists/growers for submitting stubble samples
- Fran Lopez, Centre for Crop Disease Management, Curtin University

