

Controlling Blackleg disease

- **Cultural Practices**
- . Crop rotation
- . Avoidance of last years stubble
- Breeding for resistance
 - Almost all Australian cultivars contain major gene resistance
 - Resistance is often overcome due to evolutionary potential of pathogen
- Fungicide use

Fungicide options for control of Blackleg disease

- Fungicides available:
 - . Seed dressing (Fluquinconazole Jockey)
 - . Fungicide amended fertilizer (Flutriafol Impact in Furrow)
 - . Foliar application (Tebuconazole and Prothioconazole - Prosaro)
- All DMI class of fungicides

Fungicide use in Australia

- Jockey (Fluquinconazole)
 - . Wide spread use for more than ten years
 - . Extremely cheap so used as an insurance by growers
- Impact (Flutriafol)
 - Used since the 1980s but expensive at the time
 - In the last ten years usage has increased as now very cheap and can be purchased already applied to the fertiliser
- Prosaro (Tebuconazole and Prothioconazole)
 - . Introduced 2011
 - First in-crop control option
 - Expensive
 - Still determining when the farmer gets an economic return

Screening for tolerance to DMIs

- Industry reliant on fungicides to maintain current intensity and production
- All fungicides from same group do we have tolerance/resistance?
- Developed in planta screen to look at tolerance to fluquinconazole (seed dressing)

Ascospore shower technique was used to identify potential fungicide tolerant isolates fungicide application

- Using stubble (ascospore shower) allows population to be screened rather than single isolates In 2014, limited screen carried out on 8
- populations from our fungicide trial
- Identified single population with increased tolerance
- Cultured isolates from this population

Increased tolerance carries through to 3^{rd} leaf stage and stem canker formation Pathogenicity scores (0-9) Internal infection (%)

	Pathogenicity scores (0-9)						Internal infection (%)		
	1st leaf		2nd leaf		3rd leaf		Stem		
Isolate	Bare	Jockey	Bare	Jockey	Bare	Jockey	Bare	Jockey	
14P286	6.4	5.6	6.5	5.9	6.3	4.3	100	73	
14P287	5.0	5.6	5.0	6.0	4.5	4.4	100	92	
14P289	4.8	5.6	4.5	6.3	3.0	4.4	100	81	
14P290	6.3	5.4	5.5	4.9	3.3	3.5	100	81	
14P291	7.0	6.6	6.9	6.5	5.4	5.9	100	59	
D13	5.9	1.9	5.8	1.8	3.1	1.3	100	37	

No correlation with in vitro assay

- " Sent isolates to Steven Chang and Fran Lopez for *in vitro* screening
- " No tolerance detected
- " Possible reasons
 - . Tolerance is conferred by gene expressed only in planta?
 - . Caveat: minimal growth on control plate

Survey of Australian populations

- GRDC funded a survey of 200 paddocks from across Australia
- " Samples submitted by agronomists and farmers
- Samples from a range of cultivars and fungicide regimes

No correlation between tolerance and fungicide use, cultivar or location # samples % of population (# isolates) No tolerance Low tolera 60 (25) 23 (10) 17 (7) NSW 54 (36) 26 (17) 20 (13) 76 (32) 17 (7) 23 (47) 15 (30)

Industry implications

- " First time such a survey has been done
 - . Do not know if this tolerance has always been present, is increasing or decreasing
- Tolerance (insensitivity) not resistance?
 - . Have mapping population to look at inheritance of the tolerance
- Do not know if there is cross tolerance to other fungicides
 - . Designing *in planta* experiments to test this (pending approval of variation request)

Recommendations

- " Try to reduce reliance on fungicides:
 - . Cultivar resistance rating
 - . Avoid previous year's stubble
 - . Blackleg resistance groups
- " Is still effective in 85% of paddocks.

Acknowledgements

- " Vicki Elliott (MGP)
- Andrew Ware, Kurt Lindbeck, Ravjit Khangura, Susie Sprague, Alex Idnurm, Barbara Howlett (National Canola Pathology Program)
- Steven Chang, Fran Lopez, Richard Oliver (Curtin University)
- Agronomists/farmers who submitted stubble samples

